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Commercial microwave links (CMLsS)...

[mm/h]
... are part of the cellular network.

— Specific attenuation A is in a close to linear
relationship with the path averaged rain rate R.

— Monitoring of transmitted minus received signal level

(TRSL) allows for rain rate estimation along the link path. Cnwala & Kunstmann, 2019, WIRES Water
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A-R power law: A =g RP
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The processing ﬂ(“
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CML signal levels can behave very differently and large fluctuations appear even during dry periods.
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The challenge
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The deep learning approach
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The deep learning approach
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The reference event detection method
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Graf et al. 2019 improved version of Schleiss and Berne 2010 refered to as Q80.
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The deep learning method
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The same statistics for the CNN. All the technical details in the available preprint of Polz et al. 2019.
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Improvement through the CNN
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Difference in plots a) and b) from the previous slides
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Improvement through the CNN

Difference in plots a) and b) from the previous slides
(numbers of Q80 subtracted by the numbers of the CNN)
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= Reduction of falsely generated rainfall (green) by 40% while at the same time
improving on True positive and False negative rates.
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The end

Questions/Suggestions?
Ask me anything via julius.polz@kit.edu, on Twitter

or during the EGU 2020 live chat.

Interested in our open source model?
Get it at github. com.
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https://twitter.com/jpolz3
https://github.com/jpolz/cnn_cml_wet-dry_example
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