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The theory

Commercial microwave links (CMLs)...
... are part of the cellular network.
→ Specific attenuation A is in a close to linear
relationship with the path averaged rain rate R.
→ Monitoring of transmitted minus received signal level
(TRSL) allows for rain rate estimation along the link path. Chwala & Kunstmann, 2019, WIRES Water
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Why big data?
CML network

Spatial
distribution

3904 CMLs all
over Germany

Data acquisition

Temporal resolution and
data availability

1 Minute resolution for 3
years at 97% availability

Reference

Temporal aggregation for
validation

RADOLAN RW by DWD:
Hourly gauge adjusted

radar rainfall

100.000 hours
of CML time

series

High variablity
in data quality
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The processing

↓ Remove erroneous data

↓ Detect rain events

↓ Calculate attenuation from baseline level

↓ Compensate for wet antenna attenuation

↓ Derive rain rate
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The challenge
CML signal levels can behave very differently and large fluctuations appear even during dry periods.

← Wet and dry periods

nearly separable by TRSL

values.

← Challenging daily fluctu-

ations, but clearly visible rain

events.

← Nearly arbitrary changes

from clearly visible events to

extremely noisy periods.

No intuitive
rule to separate wet and dry periods that fits all 3904 CMLs...

⇒ Data drive
n approach using deep learning
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The deep learning approach

Our approach to separate wet and dry periods:
Rain event detection in commercial microwave link attenuation data with
convolutional neural networks (CNNs) → Paper under revision

Alias ’The Black
Box’

Here you can find all
the details that we are

now going to omit.
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The reference event detection method

Graf et al. 2019 improved version of Schleiss and Berne 2010 refered to as Q80.

a) Hourly scatter density comparison of observed rain rates from 3904 CMLs and RADOLAN RW in April 2018
b) Histogram of the hourly rain rates derived from a)
c) Rainfall amount per Histogram bin in b)
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The deep learning method

The same statistics for the CNN. All the technical details in the available preprint of Polz et al. 2019.

a) Hourly scatter density comparison of observed rain rates from 3904 CMLs and RADOLAN RW in April 2018
b) Histogram of the hourly rain rates derived from a)
c) Rainfall amount per histogram bin in b)
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Improvement through the CNN

Difference in plots a) and b) from the previous slides
(numbers of Q80 subtracted by the numbers of the CNN)

a) Histogram of the difference in hourly rain rates
b) Rainfall amount per histogram bin in a)

⇒ Reduction of falsely generated rainfall (green) by 40% while at the same time
improving on True positive and False negative rates.
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The end
Questions/Suggestions?

Ask me anything via julius.polz@kit.edu, on Twitter

or during the EGU 2020 live chat.
Interested in our open source model?

Get it at github.com.

Acknowledgements to
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https://twitter.com/jpolz3
https://github.com/jpolz/cnn_cml_wet-dry_example
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