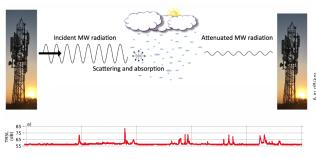
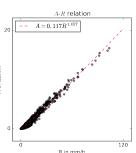


Big commercial microwave link data

Detecting rain events with deep learning Julius Polz, Christian Chwala, Maximilian Graf, Harald Kunstmann \mid May 1, 2020

KIT INSTITUTE OF ATMOSPHERIC ENVIRONMENTAL RESEARCH (IMK-IFU)



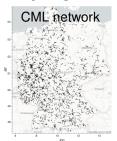


<ロ > < 部 > < 目 > < 目 > 目 ≥ 目 ≥ り へ ○

The theory

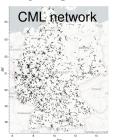
Commercial microwave links (CMLs)...

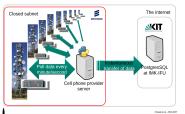
- ... are part of the cellular network.
- ightarrow Specific attenuation A is in a close to linear relationship with the path averaged rain rate R.
- → Monitoring of transmitted minus received signal level (TRSL) allows for rain rate estimation along the link path.


[dB/km]
Chwala & Kunstmann, 2019, WIRES Water

A-R power law: $A = a R^b$

[mm/h]

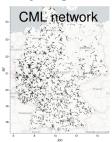



Spatial distribution
3904 CMLs all over Germany

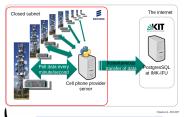
Data acquisition

Spatial distribution

3904 CMLs all over Germany

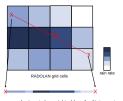

Temporal resolution and data availability

1 Minute resolution for 3 years at 97% availability



Spatial distribution

3904 CMLs all over Germany

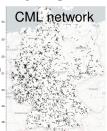

Data acquisition

Temporal resolution and data availability

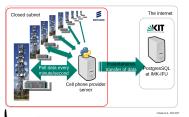
1 Minute resolution for 3 years at 97% availability

Reference

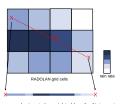
Path averaged rain rate by weighted length of intersects


Temporal aggregation for validation

RADOLAN RW by DWD: Hourly gauge adjusted radar rainfall


Spatial

distribution


3904 CMLs all

over Germany

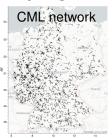
Data acquisition

Reference

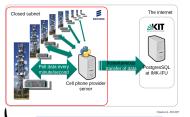
Path averaged rain rate by weighted length of intersects

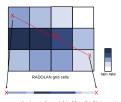
Temporal resolution and data availability

1 Minute resolution for 3 years at 97% availability


Temporal aggregation for validation

RADOLAN RW by DWD: Hourly gauge adjusted radar rainfall


100.000 hours of CML time series



Data acquisition

Reference

Path averaged rain rate by weighted length of intersects

Spatial distribution

3904 CMLs all over Germany Temporal resolution and data availability

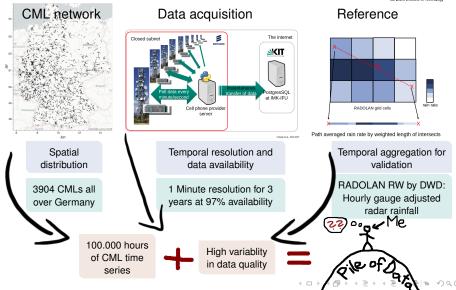
1 Minute resolution for 3 years at 97% availability RADOLAN RW by DWD:

Hourly gauge adjusted radar rainfall

Temporal aggregation for

validation

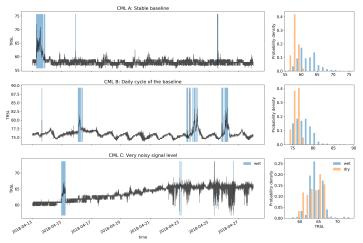
100,000 hours of CMI time series

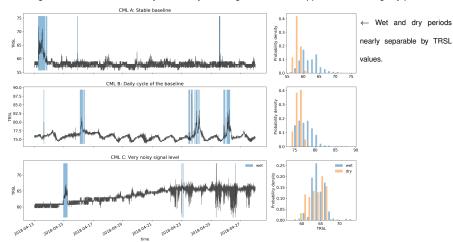


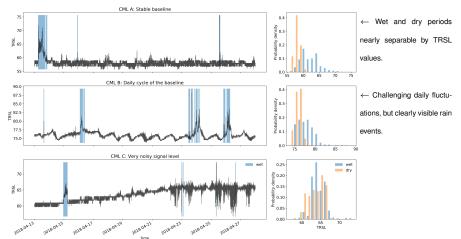
High variablity in data quality

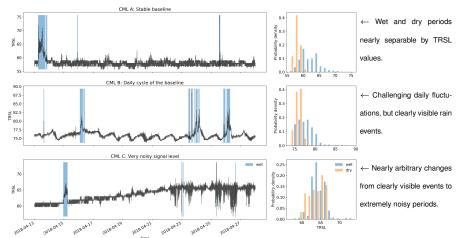
The processing

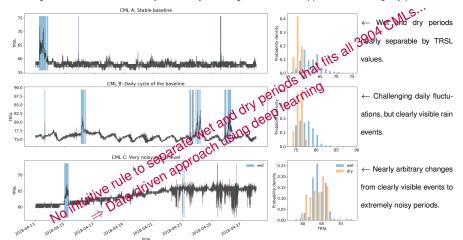
- ↓ Remove erroneous data
- ↓ Detect rain events
- ↓ Calculate attenuation from baseline level
- ↓ Compensate for wet antenna attenuation
- ↓ Derive rain rate

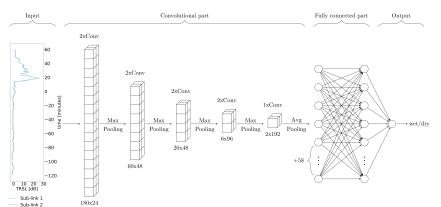










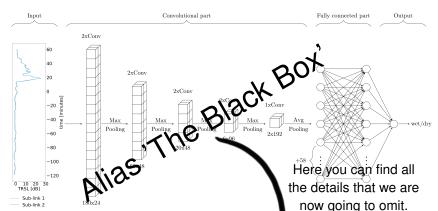


The deep learning approach

Our approach to separate wet and dry periods:

Rain event detection in commercial microwave link attenuation data with convolutional neural networks (CNNs) \rightarrow Paper under revision

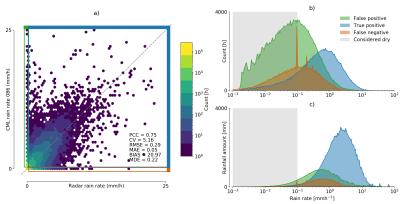
The deep learning approach


Our approach to separate wet and dry periods:

Rain event detection in commercial microwave link attenuation data with convolutional neural networks (CNNs) \rightarrow Paper under revision

The deep learning approach

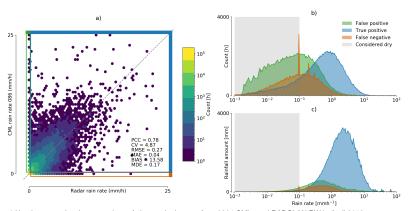
Our approach to separate wet and dry periods:


Rain event detection in commercial microwave in attenuation data with convolutional neural networks (CNNs) \rightarrow Paper under revision

The reference event detection method

Graf et al. 2019 improved version of Schleiss and Berne 2010 refered to as Q80.

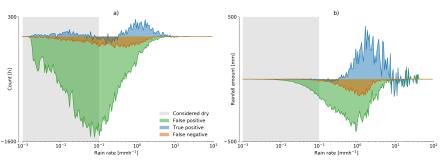
- a) Hourly scatter density comparison of observed rain rates from 3904 CMLs and RADOLAN RW in April 2018
- b) Histogram of the hourly rain rates derived from a)
- c) Rainfall amount per Histogram bin in b)



The deep learning method

The same statistics for the CNN. All the technical details in the available preprint of Polz et al. 2019.

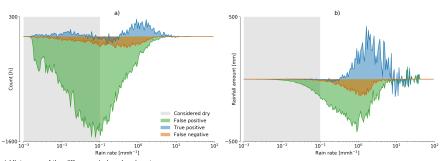
- a) Hourly scatter density comparison of observed rain rates from 3904 CMLs and RADOLAN RW in April 2018
- b) Histogram of the hourly rain rates derived from a)
- c) Rainfall amount per histogram bin in b)



Improvement through the CNN

Difference in plots a) and b) from the previous slides (numbers of Q80 subtracted by the numbers of the CNN)

- a) Histogram of the difference in hourly rain rates
- b) Rainfall amount per histogram bin in a)



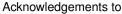
Improvement through the CNN

Difference in plots a) and b) from the previous slides (numbers of Q80 subtracted by the numbers of the CNN)

- a) Histogram of the difference in hourly rain rates
- b) Rainfall amount per histogram bin in a)
- ⇒ Reduction of falsely generated rainfall (green) by 40% while at the same time improving on True positive and False negative rates.

Julius Polz, Christian Chwala, Maximilian Graf, Harald Kunstmann

The end


Questions/Suggestions?

Ask me anything via julius.polz@kit.edu, on Twitter or during the EGU 2020 live chat.

Interested in our open source model?

Get it at github.com.

References

- [1] Chwala, C. and Kunstmann, H.: Commercial microwave link networks for rainfall observation: Assessment of the current status and futurechallenges, Wiley Interdisciplinary Reviews: Water, 6, e1337, 2019.
- [2] Chwala, C., Keis, F., and Kunstmann, H.: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications, Atmos. Meas. Tech., 9, 991999, 2016.
- [3] Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-wide commercial microwave link network: Optimized processing and validation for one year of data, Hydrol. Earth Syst. Sci. Discuss., in review, 2019.
- [4] Schleiss, M. and Berne, A.: Identification of Dry and Rainy Periods Using Telecommunication Microwave Links, IEEE Geoscience and Remote Sensing Letters, 7, 611615, 2010.
- [5] Polz, J., Chwala, C., Graf, M., and Kunstmann, H.: Rain event detection in commercial microwave link attenuation data using convolutional neural networks, Atmos. Meas. Tech. Discuss., in review, 2019.

