Unraveling the time-scale teleconnections between soil moisture and vegetation

Diego Bueso, Maria Piles, Gustau Camps-Valls
Image Processing Lab (IPL)
Universitat de València

http://isp.uv.es diego.bueso@uv.es
Spatio-temporal Earth data analysis

- Multi-scale spatio-temporal representation:
 Dimensional reduction methods

 \[\text{ROCK-PCA: Rotated Complex Kernel - PCA} \]

- Unravel Causal structure of data:
 Granger Causality methods

 \[\text{XKGC: Cross-Kernel Granger Causality} \]

[1]"Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data"
Bueso, Piles, Camps-Valls, TGRS, 2020 DOI: 10.1109/TGRS.2020.2969813

[2]"Cross-Information Kernel Causality: Revisiting global teleconnections of ENSO over soil moisture and vegetation"
Bueso, Piles, Camps-Valls, Proceedings of CI2019 http://dx.doi.org/10.5065/y82j-f154
Learning spatio-temporal Earth data representations

- PCA/EOF is popular, yet cannot cope with nonlinear spatio-temporal relations
- ROCK-PCA: nonlinear, complex domain, oblique rotation

[1]“Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data”
Bueso, Piles, Camps-Valls, TGRS, 2020 DOI: 10.1109/TGRS.2020.2969813
Learning Causal structure of data

Granger Causality
1. The cause occurs before the effect
2. The cause contains information about the effect that is unique and is in no other variable.

\[
a) \quad y_{t+1} = \sum_{k=0}^{p} a_k y_{t-k} + \varepsilon_t^y \\
\]

\[
b) \quad y_{t+1} = \sum_{k=1}^{p} a_k y_{t-k} + \sum_{l=1}^{q} b_l x_{t-l} + \varepsilon_t^{y|x}
\]

Causality index: \(\delta_{x \rightarrow y} = \log(\mathbb{V}[\varepsilon_t^y]^2 / \mathbb{V}[\varepsilon_t^{y|x}]^2) \)

XKGC: Cross-Kernel Granger Causality

\[
\psi(x_t, y_t) = [\phi_1(y_t), \phi_2(x_t), \phi_3(y_t) + \phi_3(x_t)]
\]

\[
K(x_t, y_t) = K_{xx} + K_{yy} + K_{xy} + K_{yx}
\]

- Generalizes GC for non-linear relations
- Take in account cross relations between variables
- Separate model for each relation

Multi-scale Spatio-temporal representation

- SMOS Soil Moisture (SM)
- SMOS Vegetation Optical Depth (VOD)

[1] “Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data”
Bueso, Piles, Camps-Valls, TGRS, 2020 DOI: 10.1109/TGRS.2020.2969813
SM and VOD decomposition (ROCK-PCA)

- SM: Soil Moisture
- VOD: Vegetation Optical Depth

1st: annual oscillation
2nd: seasonal oscillation
3rd: intrannual variability

Compressed description of the main variability modes

Spatio-temporal features for the three main time-scales.

SM: SMOS-BEC (Barcelona Expert Center)
VOD: SMOS-IC (INRA-CESBIO)

June-2010 to June-2017
5-day temporal bin with asc/des orbits (with asc./desc avgd. orbits) + 25km res.
Spatio-temporal Causal structure analysis

- Time series to time series
- Spatialization

Bueso, Piles, Camps-Valls, Proceedings of CI2019 http://dx.doi.org/10.5065/y82j-f154
Relation of SM-VOD modes of variability

The regression models for each relation were trained to obtain the time embedding and the optimum kernel parameters: $\delta = \delta(\tau, \theta)$

- Models were cross-validated (Proof of stationarity)

- Threshold is estimated via surrogate time series

- Significance: $\delta > 0 \text{ and } \delta > \delta_{\text{threshold}}$
Relation of SM-VOD modes of variability

Significance $\delta > 0$

Example:

$\delta_{SM_3 \rightarrow VOD_3} = \delta(\phi_{SM_3}, \phi_{VOD_3})$

$\Re\left[SM_t e^{i\phi_{SM_3}}\right]$

$\Re\left[VOD_t e^{i\phi_{VOD_3}}\right]$
Main results

- Phase to Phase relations
- Main causal relations
- Causality maps

Bueso, Piles, Camps-Valls, Proceedings of CI2019
http://dx.doi.org/10.5065/y82j-f154
Phase to Phase relation of **SM-VOD**

In general **SM → VOD** and the interannual variability **SM ← VOD**

Significance

\[\delta > 0 \]
All SM-VOD relations

Significance $\delta > 0$
Main SM-VOD relations

Significance $\delta > 0$

δ

δ

δ
Main SM-VOD relations

Significance $\delta > 0$
Maps of SM-VOD relation: SM1 \rightarrow VOD1 & VOD2

SM1 \rightarrow VOD1 mostly distributed over tropics. SM1 \rightarrow VOD2 has a stronger representation over high latitudes.
Maps of SM-VOD relation: SM1 → VOD1 & VOD2

SM1 → VOD1 mostly distributed over tropics. SM1 → VOD2 has a stronger representation over high latitudes.
Maps of SM-VOD relation: SM3 \leftrightarrow VOD3

Asymmetric relation. Same spatial patterns with different time delay relations.
Maps of **SM-VOD relation: SM3 ↔ VOD3**

Asymmetric relation. Same spatial patterns with different time delay relations.
Conclusions
Take-home messages

- Spatio-temporal Earth observation data representation
 - Nonlinear, multivariate, Multi-temporal scale
 - Complex approach allows a simple spatio-temporal analysis

- Dynamical analysis of main SM-VOD variability modes
 - SM drive the VOD inside the annual and seasonal changes
 - Low frequency changes of SM and VOD are interconnected with an asymmetric relation
Thanks!

References

[1] “Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data”
Bueso, Piles, Camps-Valls, TGRS, 2020 DOI: 10.1109/TGRS.2020.2969813

Bueso, Piles, Camps-Valls, Proceedings of CI2019 http://dx.doi.org/10.5065/y82j-f154