Mapping Forest Degradation with ALOS PALSAR: Case Studies from Ghana & Mexico

Charlotte Wheeler1, Edward Mitchard1, Mathew Williams1, Hugo Nolasco Rayes2, Yakubu Mohammed3

1 University of Edinburgh
2 FIPRODEFO, Trust for the administration of the Forest Development Program of the State of Jalisco
3 RMSC, Resource management Support Centre, The Forestry Commission of Ghana
Overview

• Forest degradation – Why monitor it & why is it so challenging?

• Methodological approach – Combining ground data & radar data

• Case study 1 – Mexico, Jalisco State
 • Degradation issues
 • Case study results

• Case study 2 – Ghana, Brong Ahafo Region/Western Region
 • Degradation issues
 • Case study results

• Summary
What is forest degradation?

Deforestation – Total clearance of forest

Degradation – Reduction in aboveground biomass from an area that remains forest after disturbance

- Gradual process
- Canopy cover remains
- Changes can be subtle
- E.g. Removal of large trees for timber (selective logging)
 OR
 Sub-canopy – removal of understory trees and replaced with crops (shade grown coffee/cocoa)
Why monitor forest degradation?

• Covers huge area
 • Potentially 2-10 x greater area than tropical deforestation annually (de Andrade et al. 2017 *Car Bal manage*.)

• So emissions from degradation could be substantial
 • ~70% of tropical forest emissions from degradation (Baccini, 2017, *Science*)
 • Degradation emissions twice that of deforestation (Mitchard, 2018, *Nature*)

• Furthermore, degradation often precedes deforestation

• **BUT** estimated poorly constrained

• Need to quantify - extent +
 - rate +
 - magnitude of emissions

• Not a purely academic effort –
 • Countries must report degradation emissions to UNFCCC
Challenges & Opportunities

Challenges
• Degradation can occur below the forest canopy
• Often occurs in regions with persistent cloud cover
 • So traditional optical satellites (e.g. Landsat) not suitable as can’t pass through cloud or forest canopy.
• Differentiating between intact forest canopy and degraded forest canopy challenging
• Degradation events are typically small (<1ha)
 • Optical satellites can detect changes in canopy cover, but big changes in canopy cover are related to heavy degradation

Opportunities
• Radar satellites can pass through forest canopy
 • Interacts with branches & stems - gives information about forest structure
• Radar backscatter signal correlated with biomass
 • Can be used to create biomass maps
 • BUT - Backscatter signal saturates at high biomass
Methodological Approach

Forest Plot Data

Census 1
Census 2
Census 3
Census 4

Calibrate
Calibrate
Calibrate
Calibrate

Alos Palsar/2
L-Band SAR Data

Change 1
Change 2
Change 3
Case Study 1 – Mexico, Jalisco

- Sierra Del Tigre
- 0.5ha
- Census 1 = 2017 (n = 10)
- Census 2 = 2018 (n = 10)
Degradation in Jalisco

Forest affected by:

- Forest fires
- Pests – bark beetles
- Agro-industry (E.g. Avocado)
Mexico - Results

Census 1 (2017) – Linear model has best fit

\[HV = 0.038 \times (AGB + 14.606) \]

\[R^2 = 0.68 \]
Mexico – AGB in 2016 & 2017

2016
Mexico – AGB Change & Degradation

Land area affected by -
Major Degradation – 0.3%
Moderate Degradation – 3.9%
Minor Degradation – 12.8%

Forest Change Class
- Major Degradation
- Moderate Degradation
- Minor Degradation
- No Change
- Regrowth

Major Degradation – loss >100 Mg ha⁻¹
Moderate Degradation – loss 50-100 Mg ha⁻¹
Minor Degradation – loss 10-50 Mg ha⁻¹

THE UNIVERSITY of EDINBURGH
School of GeoSciences
Case Study 2 - Ghana

• 11 plots in Sierra del Tigre
 • 1 ha
 • Census 1 = 1996 (n=11)
 • Census 2 = 2007 (n=4)
 • Census 3 = 2010 (n=5)
 • Census 4 = 2018 (n=11)
Degradation in Ghana

Forest affected by:

- Selective logging
- Agricultural encroachment (E.g. Casava, banana)
- Agro-industry (E.g. Cocoa)
Ghana - Results

Change in Biomass

Biomass (Mg ha⁻¹)

Year

Plot
ASN_02 ASU_02 KKS_02 SUI_01
ASN_04 ASU_08 KKS_03 SUI_02
ASU_01 ASU_99 KKS_05
Ghana - AGB

Over 20 years

In some plots there is substantial AGB loss (>100 Mg ha\(^{-1}\))

Losses >60% of AGB in some cases

Mainly due to selective logging

<table>
<thead>
<tr>
<th>Plot</th>
<th>AGB 1996 (Mg ha(^{-1}))</th>
<th>AGB 2018 (Mg ha(^{-1}))</th>
<th>AGB Change (96-18)</th>
<th>% Change (96 – 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASU_99</td>
<td>67.4</td>
<td>68.3</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>ASU_88</td>
<td>149.9</td>
<td>118.3</td>
<td>-31.6</td>
<td>-21.1</td>
</tr>
<tr>
<td>ASU_01</td>
<td>192.2</td>
<td>199.2</td>
<td>7.0</td>
<td>3.7</td>
</tr>
<tr>
<td>ASU_02</td>
<td>216.5</td>
<td>282.4</td>
<td>65.9</td>
<td>30.4</td>
</tr>
<tr>
<td>SUI_01</td>
<td>244.3</td>
<td>138.7</td>
<td>-105.6</td>
<td>-43.2</td>
</tr>
<tr>
<td>ASN_04</td>
<td>255.2</td>
<td>93.4</td>
<td>-161.8</td>
<td>-63.8</td>
</tr>
<tr>
<td>ASN_02</td>
<td>257.0</td>
<td>272.3</td>
<td>15.2</td>
<td>5.9</td>
</tr>
<tr>
<td>KKS_03</td>
<td>276.3</td>
<td>213.7</td>
<td>-62.6</td>
<td>-22.6</td>
</tr>
<tr>
<td>SUI_02</td>
<td>314.1</td>
<td>116.9</td>
<td>-197.3</td>
<td>-62.8</td>
</tr>
<tr>
<td>KKS_02</td>
<td>353.2</td>
<td>365.8</td>
<td>12.6</td>
<td>3.6</td>
</tr>
<tr>
<td>KKS_05</td>
<td>368.7</td>
<td>270.7</td>
<td>-97.9</td>
<td>-26.6</td>
</tr>
</tbody>
</table>
Ghana – AGB V’s HH/HV

No relationship between plot data & HH/HV backscatter
Apparent downward trend in HV – Very low predictive power to convert HV to AGB
Saturation of HH/HV backscatter signal in High AGB plots
Ghana – HH Change Signal

Also checked relationship between change in HH backscatter and change in AGB between 1996-2018 but not relationship
Summary

• We are able to detect forest degradation from losses in AGB in lower AGB forest

• Plots in degraded forest are invaluable – we need ground data to pick these processes up and understand them better

• BUT In high AGB forest even large changes are not detected. This is worrying

• Alos Palsar isn’t detecting major degradation events in high AGB forest

• Other instruments might detects major degradation (related to changes in canopy cover)
 • BUT they don’t map minor degradation or quantify the losses of AGB
 • We show Minor degradation covers much larger area than major degradation so we are potentially missing lots of emissions.