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Strong forcing

The effect of aerosol particles on orographic precipitation
remains uncertain due to many possible cloud microphysical
pathways, which the hydrometeors can undergo in MPCs.

Alpine MPCs are strongly affected by dynamics: Steep

orography — higher vertical velocities - enhanced relative
humidity to build up condensate and thus to form MPCs.

O 2




Goals of this study

Understand how aerosols and cloud dynamics
(vertical velocity) affect droplet formation in
an Alpine environment.

Recognize under which regimes droplet
formation 1s velocity-limited or aerosol-
limited.

Estimate the contribution of updraft velocity
variance to the total variability in predicted
droplet numbers.



Objectives

This study analyzes observational data and measurements collected in
February/March 2019 as part of the RACLETS field campaign in the alpine
region.

The CCN activity of the aerosol as well as their size distribution and
chemical composition are discussed.

The 1n-situ measurements are coupled with a state-of-the art droplet
parameterization to investigate the drivers of droplet variability in the
orographic mixed-phase clouds.
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Field Campaign

RACLETS campaign
(Role of Aerosols and
CLouds Enhanced by
Topography on Snow)

Main focus of the campaign

<=

Improve the
understanding of
precipitation formation in
clouds and snow
deposition on the ground
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Data & Methods




Instrumentation
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CCN Measurements & Sampling Strategy

Inlet: Aerosol
Streamwise Temperature Gradient

\LEL)L/\L Water diffuses faster than heat

Supersaturation, S, generated at the centerline =
IZ» <?::| f(Flowrate, Pressure and Temperature Gradient)

Particles that activate to form droplets are counted

as CCN and sized by an optical particle counter
i 1

Outlet: [Droplets] = [CCN] When switching S, instrument transients attfect
measurements, so they are “filtered” out

Metal cylinder with wetted walls

/\J
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Products: CCN concentrations at six S between 0.1
to 0.8 %

Cycle considers 10 minutes at each supersaturation
— CCN spectrum every hour

Roberts and Nenes (2005); Moore and Nenes (2010) ‘@ ©O)



Inferring particle hygroscopicity parameter (x)

1. Measure CCN concentration,
[CCN], at a given SS%, this
can be done iIn either constant
flow or scanning flow \
Istrument modes

2. Find where backwards integrated
size distribution = [CCN] to obtain
the critical diameter, d,”

dy’

\

3. Use k-Kohler theory to

calculate k:
4A3 v
K =
27d5 S+

Number
Concentration
(cm)

d, (nm)

A = 4M,,0,,/RTp,,

i ~ 1 for seasalt, ~0.6 for (NH,),SO, ~0.1-0.2 for BB
a “proxy’ for chemical composition

‘ @ ® Petters and Kreidenweis (2007); Moore et al. (2012); Bougiatioti et al. (2016)



Droplet Activation Parameterization

Observed
aerosol size
distribution e Maximum in-cloud
| o
l i Supersaturation
|
! ®® i (Smax)
i - :
Observed _J droplet growth i
aerosol g T |
< max activation ]
SOOI | | Predicted Cloud
| a.erosol ! | b
i 8 ‘.:. | Droplet Number
e | (Nd)
Observed
cloud
updraft Nenes and Seinfeld (2003); Fountoukis and Nenes (2005);

(0@ velocity Morales and Nenes (2014)
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Results & Discussion




Measured CCN concentrations at the mountain site WEdJ

Period of Interest: 24.02.2019 — 08.03.2019
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CCN-derived k-parameter at WFJ

Hygroscopicity parameter k wraps all the chemical
complexity of particles — it reflects particles composition
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S1ze-resolved x-parameter
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assuming a mixture of an
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 Aged particles (>100 nm)
are more hygroscopic than
the smaller ones

 Sub-100 nm particles are
enriched in organic
material — BB influence?

e Kk~ 0.2-0.3, typical of
continental aerosol
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Timeseries of total aerosol number (SMPS)

Question: What are the potential differences in aerosol variations between valley measurements at WOP

and measurements taken at high-altitude stations like WFJ?

Similar aerosol concentrations observed at

i both site§ — same alr masses?
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Timeseries of total aerosol number (SMPS)

Meteorological Data by MeteoSwiss
weather station at WEJ
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Timeseries of total aerosol number (SMPS)

Question: Can boundary layer dynamics explain the diurnal cycles seen during the first half of the period
of interest?

0 0.05 0.1 015 0.z 0.25 0.3 0.35 0.4 045
T T T

Black
dots: _
WOP s i &
o ‘5*‘ ~ g
Circles |
colored 77
by kappa ’f
%?leue]eS: 10’ 25:'02 28/02 Dzm?l.: . 04;:03 DE:'DB 08/03

* Daytime: upslope flow due to thermal convection — air in the boundary
layer of WOP rises up the slope increasing the concentrations of less
hygroscopic (less aged) aerosols observed during afternoon at WFJ (black
circles)

« Evening: the situation reverses, concentration max @WOP and WFdJ The up- and downslope flows

influenced by FT air (lower concentrations of more hygroscopic aerosols) produced by inclined cold or warm
boundary layers that form above the

M slopes.

Cool air
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Timeseries of total aerosol number (SMPS)
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From Aerosol to Droplets

* We use Morales and Nenes (2014) droplet formation
parameterization, with sensitivities calculated from e i ®
. e ; = ©
numerical adjoints, etc. to determine s and cloud Ny “ ®

max?

susceptibility to aerosol and vertical velocity.

droplet
S S growth
INPUT: P,T, vertical winds (o,,), aerosol size distribution+x max activation
* b 1
OUTPUT: N, (“potential”), S,.., ON4/0N,, ON,/d0,,, ON, /9« -3 §a.e:oSo
e o
 Droplet numbers and sensitivities shown are the
PDF-averaged value (integrated over the positive part of Supersaturation (%) | K, % std
the vertical velocity spectrum). 0.1 0.26 +0.10
* We don’t know ow, so we do a sensitivity calculation 0.2 0.31+0.13
for ow=0.1-0.6 m s’! 0.3 0.25+0.13
* In-cloud supersaturation for most of the simulations is 0.4 0.24+0.13
around 0.1-0.3% — xk=0.25 to run the droplet 0.6 020+ 0.12
parameterization. 08 0.19 + 0.11

« Same value of ¥ used for WOP ‘ @ ©O)
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Potential droplet timeseries (WFJ,WOP) (0,=0.1ms"?)

103_ T T T T T

. | ]
Cloud droplet concentrations ! R

r
|
I -
i in WOP are -~ 10 x more than k [ . woP| ]
I in WEJ LSl |
o e e s o I Sso
[ EEEmEEmm_— — \A;\
E Pronounced diurnal cycle in i qg A
| WOP, no cycle in WFJ ! F '
! (contrasts SMPS data) E 3
| SN
I R
I ~
i Why? |
|
I "I . - i S ¥ :
|
E » Aerosol particles brought | 101 L 3 - . \
I 24/02 00:00 26002 00:00 28/02 00:00 02/03 00:00 ~Q4/03 00:00 EH?DG\DDZ 0o Dﬂm 00:00
' up from below may bei | Date " ~ \
i enriched in particles too ' y SN . N\
| — e AN
E small to activate into | ] Precipitation is again the s A NN
] droplets E “culprit” behind the low cloud o
i . ] droplet concentrations < oal
' Accumulation mode observed at WFJ where £ .l
i aerosols that activate may | ) Ndrop — 0 g | |
! be more regional (aged) I ~ {
____________________________ | m

® A ||| [EN [T
L@H 221,'02 26/02 28/02 02/03 04/03 06/03 08/03 20
Date



Potential droplet timeseries (WFJ,WOP) (0,=0.1ms"?)

o ' s « Significant drop in N4 on 01.03, 05.03 and
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Summary of droplet response to changes in total aerosol concentration (o,=0.1ms)

velocity-limited. ) i
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N}, 18 a reflection of the dynamics

Question: What is the impact of increased updraft velocity on the limiting droplet number N, ?

i * When boundary layer! 800
| turbulence is low (0,<0.1! T el
i ms~!) — aerosol variability | 790 1 .
i does not result in al .| : Ny, seen for _
I significant change in Ny . E _ ~40% increase B Ny, > 1500 cﬁm3 ﬂ
] | 7 500 - in Nj;,, when . asl
E- In a more convectivej & doubling fI'OI_nl
! boundary layer (0,>0.3i _E 0.3 to 0.6 ms 1] '3 | |
I  ms™!), when aerosol levelsi = 04 S T v P ’
i incrgases — the 1mpact oni ...........
L Nigis moreprofound. & "7 Ny when tripling .
1 — 100 .. ow from O_.ll to 0.3 .
£ o ms
-0 . . .

p P 0 0.2 0.4 0.6 8. Ny, seen for

E O (ms7) § N,.. > 1000 cm3

* | Ny, seen for : S

N> 300 cm3
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Conclusions




Some take-home messages

CCN-derived k¥ ~ 0.2 - 0.3 — typical of continental aerosol

Accumulation mode particles (~100nm diameter) are more hygroscopic than
the smaller ones (~50nm diameter), likely from an enrichment in organic material.

Droplet formation for o, =0.1 ms™!: always aerosol limited if N, < 300 cm™3

and velocity-limited when S_ . drops below 0.1%. Droplet number never exceeds
the limit N~ 150 cm-3.

At 6,=0.3, 0.6 ms™— 1, same behavior is seen, but the aerosol limited regime is
extended to N, . < 1000, 1500 cm™ respectively.

Nii,, responds proportionally to changes in o,,.

When in the aerosol-limited regime, droplet number formation is driven by
aerosol variability.

When velocity-limited, droplet number formation 1s driven by o, variability.
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