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Short summary

Environmental conditions influence crops and final grain yield in a
complex non-linear manner, for which machine learning (ML) techniques
can account

ML typically lacks transparency and interpretability, though
understanding which are the underlying factors behind both a predicted
loss or gain is important

Aim: maintaining the ability to interpret how the models achieve their
results while benefiting from the increased predictive performance of
DL

Deep neural network (Fig. 1a) was applied to multivariate time series of
vegetation and meteorological data to estimate the wheat yield in the
Indian Wheat Belt

Features and yield drivers learned by the model were analyzed and
visualized and with the use of regression activation maps (Fig. 1b and 2)
DL model outperformed other models and facilitated the interpretation
of variables and processes leading to yield variability

Learned features were mostly related to the length of the growing

season, temperature, and light conditions during the growing season

For example,high yields in 2012 were associated with low temperatures
accompanied by sunny conditions during the growing period (Fig. 3)
The proposed methodology can be used for other crops and regions in
order to facilitate application of DL models in agriculture

Figure 1 a) adopted CNN structure b) regression activation mapping
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b) regression activation mapping
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Figure 3 Anomalies of RAMs and selected input variables for all districts for the
years 2006 and 2012. Time series for each district are shown as rows, and columns
correspond to time steps.

Figure 2 Regression activation maps
for Patiala (2006)
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