The Maya Terminal Classic Drought replicated in two stalagmites from Columnas Cave, NW Yucatán ### Department of Earth Sciences, University of Cambridge, Cambridge, UK1 Department of Geography and Environmental Sciences, Northumbria University, Newcastle, UK² Institute for Global Environmental Change, Xi'an Jiaotong University, Xi'an, China³ Environmental Research Institute, School of Science, University of Waikato, Hamilton, New Zealand⁴ Department of Geoscience, University of Wisconsin-Madison, Madison WI, USA⁵ Department of Geological Sciences, University of Florida, Gainesville FL, USA⁶ Department of Earth And Environmental Sciences, University of Minnesota Duluth, Duluth MN, USA⁷ Department of Chemistry and Biochemistry, Universität Bern, Bern, Switzerland⁸ Department of Earth Sciences, University of Oxford, Oxford, UK⁹ ## DANIEL JAMES¹ STACY CAROLIN¹ SEBASTIAN BREITENBACH² HAI CHENG³ ADAM HARTLAND⁴ IAN ORLAND⁵ MARK BRENNER⁶ JASON CURTIS⁶ CHRISTINA GALLUP⁷ SOENKE SZIDAT8 ANDREW MASON⁹ JOHN NICOLSON¹ JAMES ROLFE¹ SIMON CROWHURST¹ DAVID HODELL¹ # The Classic Maya Collapse The Terminal Classic period (800-1000CE) saw the disintegration of Classic Maya civilisation. A complex multicentury period of decline and restructuring that would come to be known as the Classic Maya Collapse. Chaac – The Maya Rain God (Photo: Mark Brenner) Hodell *et al.* (1995) first provided evidence for a possible link between increased drought frequency and the Collapse. Maya Puuc Region **▲** Uxmal Oxkutzcab Tekax > ▲ Xkichmook ▲ Ichpich ▲ Dsibilnocac ▲ Dsibiltun Chacmultun Tzucacab Hobonil 🔷 - △ Maya Polity - Modern Settlement **ECMWF ERA5 annual** precipitation contours (1979-2018) # A new record: HOBO-5 Cueva Columnas Rancho Hobonil *Universidad Autónoma de Yucatán (UADY)* Yucatán Sampled on 27/2/2005 Entrance at 40m elevation. Mean cave temperature 25.5°C at 94% humidity. Mean rainfall δ^{18} O: 1.75% (2 σ = 2.93) (All Aug-Dec 2006) HOBO-5 is an additional stalagmite record suggesting drier conditions during or following the Terminal Classic Period. - A decrease in ¹⁴C record density implies population decline in the Puuc region ~850-950CE (Hoggarth *et al.*, 2016) - The Chaac record suggests these population declines align with more frequent drier periods. Medina-Elizalde et al. (2010) show a correlation between modern rainfall amount (1966-94) and stalagmite δ¹⁸O in this region. - Our results corroborate this. HOBO-5 displays significant positive shifts in δ¹⁸O and δ¹³C spanning 900-950CE, contemporaneous with the Chaac events. HOBO-5 records less δ^{18} O variability than the nearby Chaac record, and values are consistently higher. Within the Terminal Classic Period, both records replicate a decadal scale shift to more positive δ^{18} O values. This may be due to Columnas' higher elevation above the water table, or an rainout effect along the prevailing wind direction as shown. HOBO-5's δ^{44} Ca record tracks the observed δ^{13} C changes. Major shifts in both isotope records coincide with the onset of the inferred Terminal Classic droughts. δ^{44} Ca and δ^{13} C do not return to pre-TCD values until ~1150CE (140mm). These records are consistent with changes in PCP. A high resolution stable isotope record has also been generated for HOBO-6. An age model for HOBO-6 remains to be produced, results plotted here are correlated by a modern age tie point and δ^{13} C wiggle matching. HOBO-6 does not demonstrate the offset at ~1600CE. Thank you for listening. I will now gladly accept questions.