Simulating thermochemical conversion processes in context of Underground Coal Gasification (UCG)

- Estimation of equilibrium composition of synthesis gases produced by the gasification of carbon-rich feedstock (e.g., coal, municipal waste or biomass) with Cantera software package.
- Stoichiometric equilibrium model is based on minimization of the Gibbs function (Villars-Cruise-Smith algorithm).

Considered equilibrium reactions for the equilibrium model are T/p-dependent:

- **Boudouard**
 \[C + CO_2 \rightleftharpoons 2CO \]

- **Methanation**
 \[C + 2H_2 \rightleftharpoons CH_4 \]

- **Water-gas shift**
 \[C + H_2O \rightleftharpoons H_2 + CO \]

\[p \text{ (MPa)} \]
-
 \[\begin{array}{c|c}
 \text{Temperature (°C)} & 400 & 500 & 600 & 700 & 800 & 900 & 1000 \\
 \hline
 p = 0.1 & \text{solid line} & \text{dashed line} \\
 p = 1.0 & \text{dotted line} \\
 p = 10.0 & \text{dashed-dotted line} \\
 \end{array} \]

EGU GA 2020 ERE6.1 - 18348

Process quantification and modelling in subsurface utilisation
Thursday, May 7, 10:45 am CEST, Vienna, Austria

Christopher Otto1,* and Thomas Kempka1,2

1GFZ German Research Centre for Geosciences, Fluid Systems Modelling, Potsdam, Germany

2Institute of Geosciences, University of Potsdam, Germany

* Correspondence: otto@gfz-potsdam.de
Broad range of end-use options available including fuels and chemical feedstock production

UCG ex-situ experiment

- $T = 580$ °C
- $p = 1.0$ MPa
- $SR = 0.35$

UCG field-scale experiment

- $T = 600$ °C
- $p = 0.48$ MPa
- $SR = 0.12$

- Modelling approach validated against thermodynamic models, laboratory gasification and demonstration-scale experiments

- Synthesis gas compositions have been found to be in good agreement under a wide range of different operating conditions

- Model coupling with multiphysics transport and process-unit level simulations ongoing