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ecently, the hybrid model, that combines elements o
physically-based and statistical regression methods, has been
integrated to overcome the limitation of the parametric and
physical methods.

J UAV-hyperspectal data acquisition:

» Region: south west of Luxembourg
» Location: latitude 49° 36" 47.13”" N to

. . . ° 36" 50.06” N, and longitude 5° 55 : S —
Practically, the machine learning models (MLRAs) are ) 3,6, > 060 N AN onBIae 0" 9 229 .
' - ot 06.73"" E to 5° 55"12.52" E S
trained on a simulated radiative transfer model (RTM(e.g., 5> Vecetation: Victoria Variety of botato ¢ P S
SLC) database to establish complex linear and non-linear non- 5 ' Y P v o
parametric models linking the biophysical and biochemical CI:Op. i , S —
> Six UAV flights with a DJI octocopter -

variables and spectral reflectance. . .
were performed during the growing

season 2016.
» The hyperspectral Gamaya sensor was 7
capable of collecting specral signals 41 _g&" W
bands ranging from 474-925nm. >

The MLR toolbox within the ARTMO software package
was used in this study to implement non-parametric
modelling algorithms. These approaches were classified into

Standard LUT Regularized LUT

linear (e.g., PLSR, LSLR) and non-linear regressions (e.g., RF, 2 P LUT_reg
SVR, GPR, CCF). {| l

] Research questions 1 Experimental design and Ground data:
1. To what extent does integrating the correlation structure
of selected variables into the LUT approach using the SLC

model improve the interested variables (LAI, fCover, CCC)?

(5]
Simulated canopy Simulated canopy
spectra (17,280 sim) Additive and Multiplicative spectra (17,280 sim)

resampled to UAV data  |emmm . .
Gaussian Noise resampled to UAV data
(41bands) bands) (41 bands) bands)

Database of LUT_r and LUT_std generated by RTM
r (TOC reflectance and biophysical parameters)

» The experimental field was subjected

to three nitrogen fertilisation levels of ‘ _y
80, 180, and 280 kg/ha nitrogen for 9

2. Which non-parametric algorithm provides the best licati D C L) aaaa. e — i —
1 d h d L T 1 1 rep lcatlons' | ¥ | o LoGd LUT based inversion data for the whole
estimates regard to the accuracy compared to LUT-inversion » LAI was measured bv Licor LALL2000 =eSSem CC ) C JC C ) O e e /™= (PLSR, LSIR, RFtb, SVR, GPR, GBRT, CCF)
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3. Which non-parametric algorithm provides the best

estimates regard to the accuracy compared to LUT-inversion
for LAI fCover, and CCC retrievals?

4. How does the number of training sample size influence
the performance of LUT inversion and MLRASs?

» fractional vegetation cover measured . omtons oettons
visually . AR |

» the SPAD-502 Konica Minolta

instrument used to measure leaf

chlorophyll.

l’ Define the best sample size [
and method l

Ground — Plotting global
Validation model for LAI,
Accuracy assesment fCover. CCC
(R?, NRMSE) Variablles

[ Validation data (Ground measures) ]

Results [

3. Evaluating different MLRAs of day 5 for LAI, fCover and CCC
estimations :

whole crop season:

[ 1. Comparison between LUT_reg and LUT_std through the ]

2. The sensitivity of training different sample size ( 500, 1000,
2000, 5000, 10000) from original dataset (17280sim):
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Discussion and Conclusion

“* using LUT inversion and MLRAs the Cholesky Decomposition algorithm in LUT approach of SLC-RTM (LUT_reg) has been improved the interested
variables (LAI, fCover and CCC) through the crop growing season of potato compared to LUT_std which it did not take into account the correlation
between variables.

% The findings of LAI revealed that 1000 of training datasets was sufficient for training MLRAs to get better accuracy rather than other subset of samples
(500, 2000, 5000, 10000).

% In contrary, with LUT inversion the best accuracy was achieved when the original dataset (17,280 simulations) was used for estimations.

“* Among the 7 non-parametric modelling algorithms evaluated here, PLSR performed best for LAI except the last two dates which were under the cloudy
conditions, although the non-linear non-parametric regression methods were the best for estimating CCC for all dates, especially RF(TB).

“* For fCover, the accuracy of LSLR and SVR predictions were the best and both methods derived similar results in term of NRMSE % compared to others

in the whole dates of potato experiment.

Literature

|

% Abdelbaki, A.; Schlerf, M.; Verhoef, W.; Udelhoven, T. Introduction of Variable Correlation for the Improved Retrieval of Crop Traits Using Canopy Reflectance Model Inversion. Remote Sens. 2019, 11, 2681.

% Jochem Verrelst, Juan Pablo Rivera, José Moreno, Gustavo Camps-Valls,Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval ISPRS Journal of Photogrammetry
and Remote Sensing, Volume 86,2013,Pages 157-167,ISSN 0924-2716.




