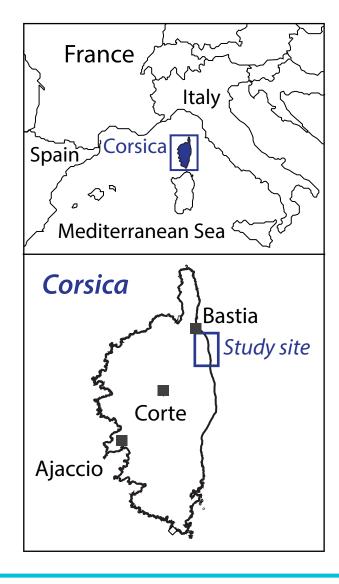
The transdisciplinary approach on coastal hydrogeosystems : tracing back socioenvironmental trajectories and water policies evolution to improve their management and adaptability

M. Erostate^{1*}, S. Ghiotti², F. Huneau¹, E. Garel¹, V. Pasqualini¹ - melanie.erostate@gmail.com / erostate_m@univ-corse.fr ¹ Université de Corse - CNRS UMR 6134 Sciences pour l'environnement (SPE), Campus Grimaldi BP 52, 20250 Corte, France ² CNRS[,] Laboratoire Art⁻Dev UMR 5281[,] Université Paul Valéry Montpellier 3[,] Route de Mende[,] 34190 Montpellier Cedex 5[,] France

Coastal lagoon : a wealth to pres


the 2nd reservoir of diversity & biological productivity

Coastal lagoons are They provide a wide range of Yet, 709 ecosystem services such as ecological habitat, coastal protection, fishing, wetlands ha aesthetic, recreational areas..., associated to high economic potential.

world's coas **Ost** during century due human activ

In the face of this, a growing awareness of the need to protect, **preserve & even restore** these environments has been observed but, a major question arose : **How can ecosystems be restored**?

In Europe, the European Water Framework Directive was establish improve the ecological and physico-chemical status & to assess r trajectories lagoons & aquatic ecosystems. To this end, an ecosystem **approach** has been developed on the Biguglia lagoon.

The Biguglia lagoon is (Fig.1) :

- the largest wetland of Corsica Island (14.5 km²)
- recognized as a **RAMSAR site & Nature Reserve**

- the result of strong interaction between hur

his natural environment over time (Fig.2B).

Fig.1: Ae & locati Bigugli wate

Historical information to support management actions

Historical archives bring old direct (figures) & indirect essential information. **HISTORICAL DATA** make it possible (Fig.3):

- to assess **baseline conditions** of lagoon ecosystems,
- to trace back the socio-envrionmental trajectories
- to assess the **ecosystem responses** to actions/stressors

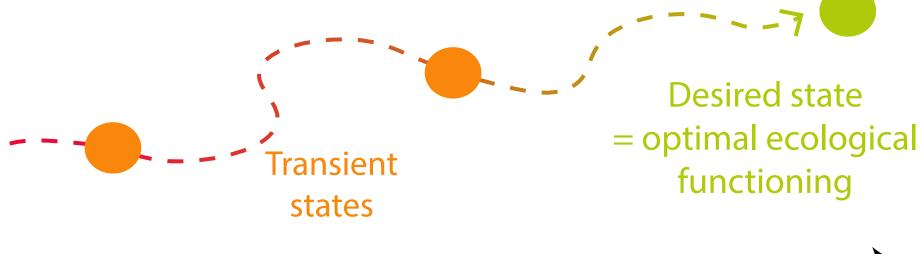
ECOLOGICAL STATE/RESILIENCE of lagoon ecosystem :

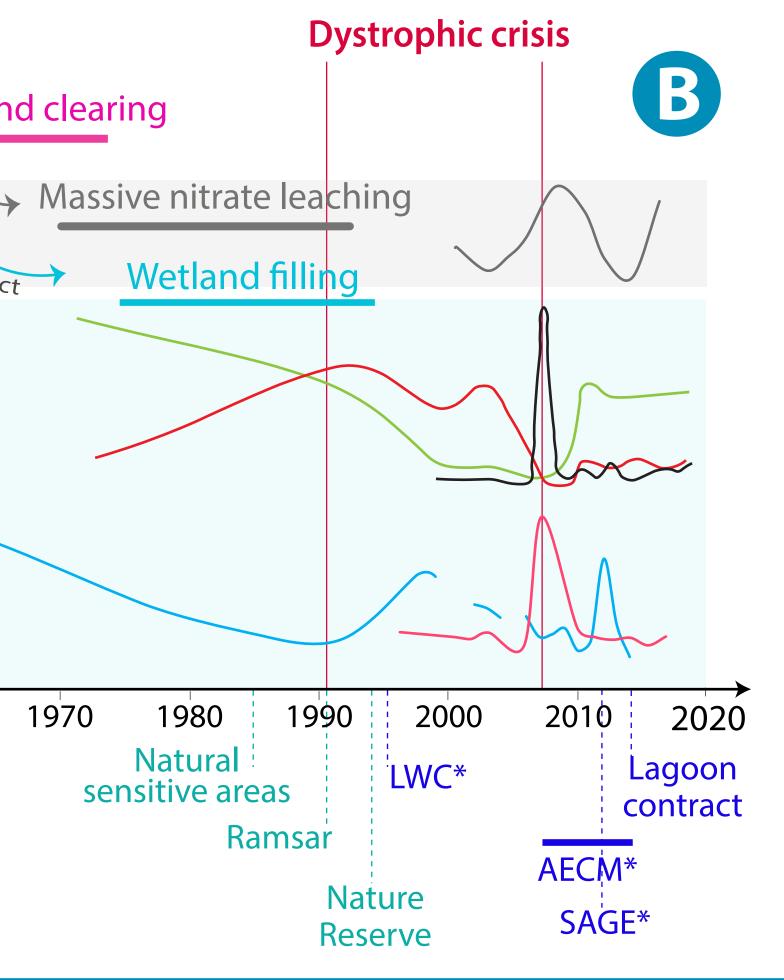
- is dependent of its whole watershed
- must include **adjacent ecosystems** : rivers & **GROUNDWATER** !
- can only be assessed by a **multidisciplinary approach**

Retracing **DEVELOPMENT AND MANAGEMENT ACTIONS**:

- the effectiveness/ineffectiveness of labels & protection status
- the preservation strategy (pedagogy, communication, isolation...)

SUSTAINABLE MANAGEMENT STRATEGIES:


• require a strong collaborative decision-making (researchers, managers & stakeholders) to define relevant restoration actions


erve	2	2 Recovery trajectory : the B					
o of stal ave been g the 20 th e to vities.	Ecosystem quality	Possible dystrophic crisis Degraded state = before degradation					
20	Development & consequences						
hed to recovery n based	Parameters dynamics	Groundwater Lagoon Phytoplankton Angiosperms Macroalgae Total nitrogen Salinity	nitrate			botential impac	
man &		Weevers 1860 1880	1900	1920	Mussels 1940	& clams 1960	
erial view ion of the ia lagoon ershed.	Management & preservation	Å –					

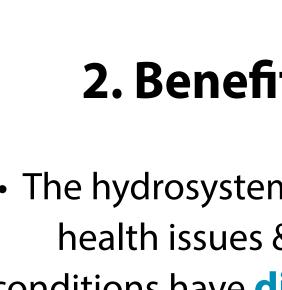


Fig. 3: How past & current knowledges can be helpful for lagoon ecosystems sustainable management.

• **Dewatering actions** to fight malaria --> **major inflow of fresh** water to the lagoon, impacting its physico-chemical conditions.

• Land clearing --> wetland landing & nitrate leaching to groundwater. Because of the groundwater inertial behavior, this pollutant legacy are still impacting the water quality.

• Actions to favor lagoon water renewal & avoid dystrophic crisis --> ecosystem disturbance (species dynamics & disparition)

• Since the 90's, labels/protection status have been accompanied by concrete management action to restore the ecosystem. Management actions (LWC, AECM, SAGE, Lagoon contract) have contribute to reduce pollutants fluxes towards the lagoon & the groundwater.

• The transdisciplinary approach & the collaborative **decision-making** is essential for designing sustainable management strategies for coastal hydrosystems.

FOR FURTHER READING

M. EROSTATE, et al. 2020 in Water Reasearch 172 M. EROSTATE, et al. 2019 in J. of Hydrology 578 J. JAUNAT, et al. 2019 in Sc. Of Total Env. 658, 1390-1403 M. EROSTATE, et al. 2018 in Sc. of The Total Env. 644, 928–940 V. PASQUALINI, et al. 2017 in Ecological Engineering 102, 1-14

1. Restoration & reference state (Fig.2A)

• Restoration aims to achieve the **integrity & biological** diversity at spatial & temporal scales. To make sure that restoration actions are relevant, it's essential to define the **REFERENCE STATE** to rightly assess actions to reach the

2. Benefits of long-term approach (Fig.2B)

• The hydrosystem has been **managed over time**, mainly due to health issues & fishing activities. Measure improve sanitary conditions have **disrupted the lagoon hydrological behavior**.

Take home message

 Ecosystem management is grounded in the fact that human **activity** are inseparable from ecosystems.

• The **ecosystem responses** to past manage actions, human & climatic stressors can be assessed by the **long time study**.