New Algorithm and Processor for Obtaining Maritime Information from Sentinel-1 Radar Imagery for Near Real Time Services

Andrey **Pleskachevsky**, Sven **Jacobsen**, Björn **Tings** Egbert **Schwarz, Detmar Krause**, Holger **Daedelow**

DLR, Maritime Safety and Security Lab Bremen

DLR, National Ground Segment, Neustrelitz

- Examples and concept
- Background
- Model Functions Tuning
- NRT implementation
- Outlook

Knowledge for Tomorrow

Short description

The new empirical algorithm allows estimation of total integrated sea state parameters and also partial integrated parameters including

- significant wave height $H_{\rm s}$,
- first moment wave period T_{m1} ,
- second moment period T_{m2} ,
- mean period T_m
- like swell (dominant and secondary) and windsea wave heights S_{w1} , S_{w2} , S_{ww}
- windsea period T_w .

The algorithm allows processing of different S1 Synthetic Aperture Radar (SAR) modes with different resolution into sea state fields:

- For Sentinel-1 S1 Wave Mode (WV), acquires multiple vignettes with an extent of ~20km×20km and each displaced by 100 km along satellite tracks in open ocean (global) with relatively high spatial resolution of ~4 m wave height can be estimated with accuracy of ~35cm. This is comparable with the accuracy of satellite altimetry and a new achievement for SAR based techniques.
- For Sentinel-1 Interferometric Wide Swath Mode (IW) covers area-strips of thousand kilometres of earth and ocean surface in coastal
 areas with a resolution of ~20m by sequences of multiple images with an approximate size of 200km×250km the accuracy of ~ 70cm

The algorithm has been integrated into a prototype processor for Sentinel-1 SAR imagery. The DLR Ground Station Neustrelitz applies this prototype as part of a near real-time demonstrator MSA service.

1. Concept and Examples

- 2. Background
- **3. Model Functions, Tuning**
- **4. NRT implementation**
- 5. Outlook

1.1. Sentinel 1A, 1B IW und WV Modi

Sentinel-1A - 2014 Sentinel-1B - 2016

- ► flight 704 km
- ▶ ground speed 6.8 km/s
- ► C-Band Radar with wavelength of 5.6 cm

- IW Interferometric Wide Swath Mode Coastal areas
 ~ 200 km × 250 km, ~ 35m resolution, 10m pixel
 GRDH: level-1 Ground Range Detected High-resolution products
- WV Wave Mode Ocean
 ~ 20 km × 20 km vignette each 100 km, ~ 5m pixel
 SLC: Single Look Complex products

1.2. New sea state processor S1 IW and WV

New method allows estimating series of integrated sea state parameters for both S1 WV (tracks) and IW (fields)

Total integrated

partial integrated

1.3. Concept: maritime situation awareness (MSA) for safe navigation

Integrated Processor for MSA: Near Real Time services(NRT)

DLR Maritime safety and security Lab Bremen algorithms and processor development

DLR Ground Station Neustrelitz (NZ) **NRT chain**

NRT products

- operationally:
 - -sea state
 - -wind
- -ships
- -icebergs

FUSION WITH DATA FROM OTHER SOURCES

+ measurements + forecast + ship AIS

1.4. Sea State Processor for Maritime Situation Awareness

NRT services: SENTINEL-1 waves, wind, ships

Raster: 6 km, Subscenes: 2.5kmx2.5km

1.5. Sea State Processor Example Hurricane Irma – ESA news

Hurricane "Irma" 2017 (S-1)

-80

S

(0)

 α

-80

new techniques and algorithms allow observation and validation of forecast models worldwide

2017-09-10 23:25 UTC

ESA news: Sentinel-1 sees through hurricanes

"... information about the sea state can help to assess how destructive a hurricane is and can predict its path respectively time and location on which it will make landfall"

PAR AND

1.6. Support of a research cruise in Arctic Seas – navigation and routing

Arctic Sea, 05.01.2017

Processed in NRT And send to research vessel "Akademik Treshnikov" on Antarctic Circumnavigation

1.7. Following a storm in the Black Sea: 3 days (S-1)

Total Significant Wave Height | Black Sea storm 20-23.04.2017 | SENTINEL -1 SAR C-band IW mode | processing mesh 6km×6km

1. Concept and Examples

2. Background

- **3. Model Functions, Tuning**
- **4. NRT implementation**
- 5. Outlook

1. Basic Research - Functions & Algorithms

SAR Imaging Mechanism: Geophysical Model Function (GMF): development and adoption

- mathematic investigations
- for practical applications

2. Software Development - Prototype & NRT Processors

- implementation of GMF into Processors (SSP) prototype
- implementation of SSP into processing chain for NRT cervices,

3. Processing and Results Analysis - What do we learn?

Forecasts improvement and geophysics

- statistics, local distributions
- extreme events
- assessments, danger localization, follow up and validation of forecast models (e.g. DWD)

Tsiolkovsky rocket equation 1903

first human in space

International Space Station 1998

2.2. Satellite Radar Imagery

active sensor

2.3. Sea surface by different sensors

DLR

SENTINEL S-1 IW VV 10m Pixel, C-band Hs ~ 0.5m Hs ~ 4m TerraSAR-X StripMap VV 1.25m Pixel, X-band Hs ~ 7m **Principle** wind and sea state estimation Local wind averaged value compatibility SAR subscene TS-X rs-> Variance, FFT Local waves GLCM calm (swell) moderate strong

2.4. Artefacts pre-filtering

Artefacts in SAR image impact spectra

Task №1 - removing artefacts before analysis

- Sand banks
- Wave breaking
- Ships, Buoys, Wind farms
- Current fronts, ship wakes

Without pre-filtering estimated *Hs* can > 10 times overestimate real value

3 STEPS

- ► Removing before analysis
- ► Function correction terms
- Control results

1. Concept and Examples

2. Background

3. Model Functions, Tuning

4. NRT implementation

5. Outlook

3.1. Empirical Function and Parameter (SAR features)

Function: linear regression

$$P_i = \sum_{n=0}^{N} A_n S_n$$

Solution: quadratic minimization using SVD (singular value decomposition) – optimal solution for a linear system

SAR features type

Parameters first order

1. Subscene properties and statistics NRCS, Norm.-variance, skewness, kurtosis,

+ 5 additional parameters (will be published later)

2. Geophysical	Wind					
3. GLCM (grey level co-occurrence matrix)	GLCM-mean, variance, entropy, correlation, homogeneity, contrast, dissimilarity, energy					
4. Spectral-A	using spectral bins for different wavelengths					
	Goda-parameter, Longuet-Higgins-parameter, + 5 additional parameters (will be published later)					
5. Spectral-B	20 parameter by using orthonormal functions, cutoff by ACF (autocorrelation function)					
A						

Linear regression Empirical Model Function (EMF) bases on parameters

- Image spectral parameters (20 par.)
- Local wind information, variance
- GLCM (Grey Level Co-Ccurrance Matrix) parameters (Entropy, Homogeneity, Contrast, Dissimilarity, etc.)

Model Function tuning – combination of spectral and Image feature analysis + filters

- tuning by minimizing root mean squared error RMSE
- number of used features improve results

Tuning using **integrated spectrum energy only** (optimal RMSE =1.31m)

Tuning using:

- integrated image spectrum energy
- local wind U_{10}
- spectral parameters

- GLCM parameters (optimal RMSE =0.83m)

Example for collocations of individual S1 IW images with measurement stations in the **North Sea, Eastern Baltics and North Atlantics** used for algorithm tuning and validation.

3.3. Model Function – example features estimation

Linear regression Empirical Model Function (EMF) bases on parameters

- Image spectral parameters (20 par.)
- Local wind information, variance
- GLCM (Grey Level Co-Ccurrance Matrix) parameters (Entropy, Homogeneity, Contrast, Dissimilarity, etc.)

 $W = a_0 + \sum_{i=1}^{n_s} a_i s_i +$

3.4. New sea state processor 2020: SWH improvement IW

New processor 2020 SAINT Sea State Processor SSP for sea state fields estimation

- New function with new parameters
- New S1 IW acquisition (~ 2000) + new validation data -
 - CMEMS model results with ~5km resolution worldwide (/WW3 ~30km resolution)
- New software
- Higher accuracy for SWH + additional parameters

90000

80000

70000

≤ 60000 ≤ 50000

> 40000 30000 20000

10000

Collocated SWH distribution, 10km raster

79060

45996

9702

30-60 60-120

76478

0 0 - 15 15 - 30

3.5. Accuracy: new sea state processor S1 IW and WV

RMSE

	SWH	Tm0	Tm1	Tm2	Sw1	Sw2	Sww	Tw
S1 IW	63cm	1.15 sec	0.95 sec	0.79 sec	0.52 m	0.38 m	0.73 m	0.92 sec
S1 WV	35cm	0.64sec	0.52 sec	0.53 sec	0.42 m	0.35 m	0.41 m	0.65 sec

1. Concept and Examples

2. Background

3. Model Functions, Tuning

4. NRT implementation

5. Outlook

4.1. Sea State Processor for SENTINEL-1 and TerraSAR-X at Ground Station NZ

4.2. Acquisitions for a location S1 IW

Wave Detection Fjaltring 25 5.0 (Nymindegab 7,5 10,0 FINO-3 North Sea Buoy II North Sea Buoy II Bunkerhill Helgoland-N Lightship GB TWEms_WIND FIN Elbe @melander-WEO-WaddenEierlandseG \times Radar Satellite Wave Detection Product Waveheight 1.88 m COC Lat 54.9133° 8.1009* Lon 10.0 © FMS-Neustrelitz

2018-03-28 05:41:27

4.3. Copernicus Local Ground Station Neustrelitz

Ground Station Neustrelitz, acquisition circle for Sentinel-1, 5 degree elevation. Inside of this area the data can be transferred from satellites to ground station directly after acquisition, without delay, for NRT processing.

1. Concept and Examples

2. Background

3. Model Functions, Tuning

4 NRT implementation

5. Outlook

Example S1 IW (2): Atlantic - Storm

Sequences of 12 S1-IW images, North Atlantic with Hs of ~ 9 m coverage~ 250 km × 2200 km, Raster 3 km (60 × 80 = 4800 subscenes/image).

