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warm 
December wet spring

main drivers
● In 2016 France experienced an 

unprecedented crop failure

● The drivers of this event were identified as 
a combination of an unusually warm 
December and a wet spring (Ben-Ari et 
al., 2018)

● Both of these drivers in combination lead 
to the extreme impact

Motivation: 2016 crop failure in France



● An extreme impact can be caused by a 
combination of several meteorological 
drivers (i.e., a compound event, 
Zscheischler et al., 2018); These drivers 
are often unknown

● How to identify multiple (unknown) drivers 
of extreme impacts?

Driver 1 Driver 2 Driver n

Extreme 
impact

?
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Motivation



Aim of this study
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Identify meteorological conditions that lead to crop failure through statistical modelling.

● Use model simulations to have large amount of consistent data available

● Use LASSO regression to identify explanatory variables of crop failure



Data

Input variables:
● Dewpoint temperature
● Maximum temperature
● Minimum temperature
● Shortwave radiation
● Precipitation
● Wind speed
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APSIMEC-Earth

Meteorological 
boundary conditions Crop model Yearly crop yield● We use EC-Earth to provide 

1600 years of daily 
meteorological input data 
for the crop model APSIM 
(simulates wheat)

● Crop yield depends on 
meteorological conditions 
during growing season

https://commons.wikimedia.org/wiki/File:Wheat_fields_at_N%
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Mean yield
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We exclude grid points with mean yield below the 10th percentile (crosses).



● We define the lowest 5 percent of crop 
yields as extreme yield loss years 
(“bad years”)

● All remaining years are considered 
“normal years”
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Defining extreme impacts
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maximum 
temperature

● Daily evolution of meteorological variables over the course 
of the year for a grid point in France

● Exploratory composite analysis of meteorological variables: 
some variables (not all) seem to be linked to bad yield at 
certain times during the growing season 

wind speed30-day sum of 
precipitation

Exploratory analysis (single grid point)
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● Correlation between crop yields and meteorological variables

● We use this analysis to narrow down the meteorological variables to be investigated 
further: precipitation (Pr), maximum temperature (Tmax), vapor pressure deficit (VPD, 
calculated based on met. variables)

Selecting relevant variables (and months)
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In addition to the Tmax, VPD and Pr, 7 extreme indices were considered (Vogel et al. 2019)

Meteorological drivers used in the analysis



A logistic regression model

● Goal: statistical approach that identifies predictors that have a strong impact on a target 
variable

● Yield considered as the binary response, 0=bad year, 1=normal year

● LASSO logistic regression (Tibshirani 1996)
○ Optimizes the fit through regularization (prevents overfitting)
○ Account for correlation between variables
○ Automatic variable selection: Removes unimportant variables and keeps only relevant 

variables that contribute towards prediction of the impact
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Evaluation of the model using Critical Success Index (CSI)

● Mean CSI is 0.43
● High performance in Central Europe and in the Corn Belt in the 

USA
● Low performance in the vicinity of the Rocky Mountains and in 

many Asian grid points
● Strong correlation between CSI and mean annual yield 

St

12

Mean yield [t/ha]

C
S

I

LASSO model performance
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Analysing compounding effects (1/2)

How many seasons are 
included?

● Increasing number 
from SE to NW in 
the USA

● Number of included 
seasons is low in 
southern Asia

Which meteorological 
variables are included?

● VPD is included in 
97.3% of grid points

● 73.0% of grid points 
include all variables
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How many extreme 
indicators are included?

● median number of 
extreme indices 
kept = 2

● very few areas 
without any extreme 
indices kept

Analysing compounding effects (2/2)



The extension "Y1" signifies that the respective variable month belongs to the first year of the 
growing season, while "Y2" signifies it belongs to the latter.
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● In Europe and North 
America, VPD and Pr 
in spring to early 
summer are the 
prevailing monthly 
predictors

● Diurnal temperature 
range (dtr) and number 
of frost day (frs) are the 
most frequent extreme 
indicators, maximum 
5-day precipitation 
(Rx5day) is especially 
common in Asia

Variable importance



● Strong relationship between CSI and mean yield: LASSO model performs better for location 
with high mean crop yield

● In most areas, nearly all meteorological predictors and at least two seasons are relevant for 
explaining bad years → compounding effect between multiple climate drivers and seasons

● VPD was kept as explanatory variable in almost all grid points

● Diurnal temperature range, number of frost days, and the hottest day of the year are the most 
relevant extreme indicators to explain crop failure

● Consideration of predictors at the exact timing of phenological stages instead of at a monthly 
scale might further improve model accuracy
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Discussion



● We have presented an automatic approach to identify the most relevant meteorological 
predictors of extreme impacts using simulated wheat yields as an example

● LASSO regression can successfully
○ identify the drivers of extreme bad yield
○ identify during which time of the year the meteorological variables play a critical role for 

causing crop failure
○ integrate a large number of predictors

● The findings can be compared to real-world observations and the approach can be applied to 
other climate-related impact  
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Conclusions
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