Characterising landslide processes using limited data: case study on East Sikkim, India

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood¹, Christian Arnhardt², Faith Taylor¹, and Helen Reeves²

¹ King's College London, ² British Geological Survey, ³ University of Exeter, UK

<u>renee.heijenk@kcl.ac.uk</u>, @renee_heijenk

London NERC DTP

Cohort 4

Background

Study area

Landslide mapping

E. Landslide domains

> F. Application example

> > H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

A. Overview

Main aim

Characterise and map landslide processes in data-poor regions, using locally detailed environmental information in a **landslide domains** framework.

Overview of presentation:

- B. Landslide domains background and framework
- C. Study area
- D. Landslide mapping
- E. Landslide domains
- F. Application example
- G. Summary

ground

Study

Landslide

Landslide

Application

Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

B. Landslide domains background [1/2]

"Areas of similar physiographic, meteorological, climatic and geological characteristics that shaped the style of landsliding."

Dashwood et al. (2017)

- Mapping environmental characteristics that drive landslide processes,
- Use detailed landslide process information about a small part of the region to fill to fill in data-poor parts with similar environmental characteristics,

The Landslide Domains Map of Great Britain. Figure from BGS (2018).

Background

C. Study area

Landslide mapping

<mark>E.</mark> Landslide domains

Application example

H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

Background

Study

Landslide mapping

E. Landslide domains

F. Application example

> H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

C. Study area [1/2]

District of East Sikkim in India:

- Lesser and High Himalaya,
- On the Main Central Thrust zone which acts as a boundary between weak phyllites and mica schists, and hard gneiss.

> Background

Study

Landslide mapping

<mark>E.</mark> Landslide domains

F. Application example

H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

C. Study area [2/2]

In many data-poor areas:

- systemic information on landslide occurrence is rarely available, other than near roads and towns;
- data about environmental characteristics is sparse.

We have supplemented the Geological Survey of India inventory (see section **D**. Landslide mapping).

Elevation model of East Sikkim, low (green) to high (brown), with capital (red), roads (black) and GSI landslide inventory (black dots).

Overview

> ground Back-

Study

Landslide mapping

Landslide domains

Application example

Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves²

[1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

D. Landslide mapping [1/3]

Using open-source Google Earth 3D we mapped in whole of southern Sikkim, India:

- Similar geology West and East,
- Results in similar landslide processes,
- Increased data.

> Background

Study area

Landslide mapping

E. Landslide domains

Application example

H. Summary

Renee.Heijenk@kcl.ac.uk

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

D. Landslide mapping [2/3]

- 167 landslide mapped in East Sikkim, India,
- 389 features mapped in **southern Sikkim**:
 - 256 translational landslides,
 - 133 debris flows.
- Ground-truth through fieldwork February 2019

Background

Study area

Landslide mapping

<mark>E.</mark> Landslide domains

> F. Application example

H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

D. Landslide mapping [3/3]

- Main landslide types and processes that occur in Sikkim, India
 - Translational slides, with sub-types:
 - Rotational rock slide
 - Translational rock slide
 - Debris slide
 - Debris slide into debris flow
 - Debris flows
 - Rock falls
- Where material type could not be determined, the main type was used.

> Background

Study area

D. Landslide mapping

Landslide domains

F. Application example

> H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

E. Landslide domains [1/5]

4 landslide domains mapped:

- Translational landslides mostly found on colluvial slopes
- Rock falls on upper parts of slope, debris slides on lower parts of slope
- 3. Debris flows
- 4. Rock falls and slides driven by frost-thaw processes

Dominant variables for each process discussed in next slides.

Back-

Study area

Landslide mapping

E. Landslide

F. Application example

> H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

E. Landslide domains [2/5]

Landslide domain 1

- Relatively soft phyllites,
- Colluvial slopes with creep observed and more active debris slides,
- Based on and delineated by lithology.

> Background

Study area

D. Landslide mapping

E. Landslide domains

F. Application example

> H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

E. Landslide domains [3/5]

Landslide domain 2

- Relatively hard quartzites,
- Rock falls and slides observed at the top of slopes,
- Predominantly wedge failures
- Based on field observations, delineated by lithology.

> Background

Study

D. Landslide mapping

Landslide domains

F. Application example

H. Summary

Renee.Heijenk@kcl.ac.uk

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

E. Landslide domains [4/5] Landslide domain 3

- Mix of hard and soft gneisses,
- Shallow vegetation removing rock slides observed on Google Earth,
- Based on landslide mapping, delineated by lithology and elevation.

Area and landslides per km² for each lithology, number above blue and orange bars denote the number of landslides this data is based on.

> Background

Study area

D. Landslide mapping

E. Landslide domains

F. Application example

> H. Summary

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

Renee.Heijenk@kcl.ac.uk

E. Landslide domains [5/5]

Landslide domain 4

- Mostly rock falls, some debris flows,
- Driven by frost-thaw processes,
- Delineated by elevation.

> Background

Study area

D. Landslide mapping

E. Landslide domains

F. Application example

> H. Summary

Renee.Heijenk@kcl.ac.uk

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

F. Application example in UK

Targeted landslide susceptibility models for relevant domains.

Debris flows in Scotland

Debris flows found using targeted air photo mapping and outcome of debris flow potential model (Dashwood *et al.*, 2017)

> Background

Study

D. Landslide mapping

> Landslide domains

Application example

H. Summary

Renee.Heijenk@kcl.ac.uk

Characterising landslide processes using limited data

Renée A. Heijenk¹, Bruce D. Malamud¹, Claire Dashwood², Joanne Wood³, Christian Arnhardt², Faith Taylor¹, and Helen Reeves² [1] King's College London, [2] British Geological Survey, [3] University of Exeter

F. Summary

- Using additional data from similar geology East Sikkim (900 km²) can be characterised into four landslide domains using limited data.
- These four landslide domains define regions of common processes.
- Landslide domains in general are an efficient method to categorise landslide processes, leading to better understanding of landslide susceptibility.

