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Thermal thrust effects

An intricate role, among the complex non-gravitational perturbations, is played by the subtle
thermal thrust effects that arise from the radiation emitted from the satellite surface as
consequence of the non uniform distribution of its temperature

In the literature of the older LAGEOS satellite

this problem was attacked since the early 80s’ of it IA““"":E:US tﬂﬂﬂl&fﬂtmﬂ (pm/s?)
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: H Figure 2. LAGEOS 1 anomalous acceleration: observed data points (squares) are based on 15 day
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researchers that have successful Iy worked on shadow; S denotes season with southward travel.
this very important issue




Thermal thrust effects

The dynamical problem to solve is quite complex and should account for the following main
aspects:

e A deep physical characterization of the satellite
— emission and absorption coefficients, thermal conductivity, heat capacity, thermal inertia, ...

e Rotational dynamics of the satellite
— Spin orientation and rate

e Radiation sources
— Sun and Earth

* LASSOS model
+  Observations
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Thermal thrust effects

We have tackled the problem following the two approaches considered in the past in the
literature (but with some differences):

e We developed a simplified thermal model of the satellite based on
— the energy balance equation on its surface
— alinear approach for the distribution of the temperature with respect to its equilibrium (mean) temperature

e A general thermal model based on
— a satellite (metallic structure) in thermal equilibrium
— the CCRs rings are at the same temperature of the satellite
— for each CCR the thermal exchange with the satellite is computed




Thermal thrust effects

The main perturbations to be taken into account are:

e The solar Yarkovsky-Schach effect
— an anisotropic emission of thermal radiation that arises from the temperature gradients across the surface
produced by the solar heating and the thermal inertia of the various parts (mainly from the CCRs)
— it produces long-term effects when the thermal radiation is modulated by the eclipses

e The Earth Yarkovsky thermal (or Rubincam) effect
— the temperature gradients responsible of the anisotropic emission of thermal radiation are produced by the
Earth’s infrared radiation
— the bulk of the effect is due to the CCRs and their thermal inertia

» The asymmetric reflectivity effect
— A different reflectivity of the hemispheres




The LATOS thermal model

We have developed LATOS a new thermal model for LAGEOS satellites
LArase Thermal mOdel Solutions (LATOS)

Motivation:

Necessity of improved models for the NGP

* Thermal drag/thrust effects (Yarkovsky effect, Yarkovsky-Schach effect)
 Asymmetric reflectivity (LAGEOS, LAGEOS Il)

Previous models:

Rubincam, D.P,, 1987. LAGEOS orbit decay due to infrared radiation from Earth. ). Geophys. Res. 92, 1287-1294.

Rubincam, D.P., 1988. Yarkovsky thermal drag on LAGEOS. ). Geophys. Res. 93, 13805-13810.

Rubincam, D.P., 1990. Drag on the LAGEOS satellite. ). Geophys. Res. 95, 4881-4886.

Farinella, P., Nobili, A.M., Barlier, F., Mignard, F., 1990. Effects of thermal thrust on the node and inclination of LAGEQS. Astron. Astrophys. 234, 546-554.
Farinella, P., Vokrouhlicky, D., 1996. Thermal force effects on slowly rotating, spherical artificial satellites-I. Solar Heating. Plan. Space Sci. 44, 1551-1561.
Vokrouhlicky, D., Farinella, P., 1996. Thermal force effects on slowly rotating, spherical artificial satellites-1l. Earth infrared heating. Plan. Space Sci. 45, 419-425.
Slabinski, V.J., 1996. A numerical solution for LAGEQOS thermal thrust: the rapid-spin case. Celestial Mech. Dyn. Astron. 66, 131-179.

Andrés de la Fuente, J.1., 2007. Enhanced Modelling of LAGEQOS Non-Gravitational Perturbations (Ph.D. thesis). Delft University Press. Sieca Repro, Turbineweg 20,
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The LATOS thermal model

The thermal thrust force:

4 g,
dFT _ _%t{TT ffAn

C

The force, normal to each surface element dA depends from the temperature T and
emissivity € of the part considered.

It is necessary to know the temperature distribution inside the satellite and the
satellite position with respect to the external heat sources (Sun and Earth).




The LATOS thermal model

The thermal equations:

dTi
dt

Cz' — (Eﬁcpabs kE — -Pem 11) + Ejj?i,j (T;l - T;l) + chfi,j (Tz _ Tj)

\ ] J
. H han n th
Thermal Difference between the total eat exchanged between the

. ) different elements of the satellite
capacity Power absorbed and emitted . .
due to radiation and conduction

The input to the system of differential equations are:
» Attitude of the satellite (from LASSOS model)

* Thermal and optical parameters of the satellite (from technical documentation and tests) that contribute
to the different constants in the system




The LATOS thermal model

* The satellite is divided into several parts which are assumed to have no thermal
gradient within them. For the two LAGEOS: the CCRs, the two hemispheres and
the core. The rings that block the CCRs are considered isothermal to the
hemispheres.

* The conduction constant between the CCRs and the hemisphere in which they
are inserted was numerically calculated using a FEM model.
Coupling of a CCR with the structure
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The LATOS thermal model

We considered three external heat sources:

* The direct Sun radiation — using the standard value of ¢$,=1360.8 % at1A.U.

* The Sun radiation reflected from Earth (Albedo)

We use CERES monthly averaged SW radiation data at
the top of the atmosphere taking into account night-
day alternance, satellite attitude and orbital position.
The grid is 1°x1° Latitude-Longitude.

 The infrared radiation from the Earth

We take into account the temperature of the different
parts of the Earth using the monthly averaged data
from Land + Ocean 1°x1° Latitude-Longitude grid from
Berkeley Earth Organization. Attitude and orbit of the
satellite are considered.
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Preliminary results

 We developed two versions of the model (LATOS), an averaged one, usable for fast-
spin conditions, and a general one, not averaged, to be used when the spin is slow
with respect to the orbital period.

* By integrating the thermal equations we get the temperature distribution in the
satellite and from this distribution we calculate the thermal thrust accelerations.

* We then calculated the effects of the thermal accelerations (via Gauss equations) on
the rate of the Keplerian elements. The results can be compared with the
corresponding rate residuals from a precise orbit determination (POD).

LArase Thermal mOdel Solutions (LATOS)




Preliminary results

LAGEOS II: Temperatures of core and of the hemispheres
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Preliminary results

LAGEOS II: Temperature of CCR #1
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Preliminary results

LAGEOQOS Il: accelerations in Gauss reference frame
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Preliminary results

degree / year

dow V1 - e?
Argument of the pericenter LAGEOS I dt nae

»x10°

model
residual

.\'w | i U

| | | | | 1 | | 1 | |
50000 50500 51000 51500 52000 52500 53000 53500 54000 54500 55000
MJD

rsin(w + f) cosi

Hsini

peas 7 (s + S22
—R cos sin
1-—e?

* Being able to clean up this parameter

has a particular importance for us: it
contains a secular effect from
General Relativity, due to the
Gravitoelectric field (M) and to the
Gravitomagnetic field (J)

About 27 years POD of LAGEOS Il with GEODYN II




Preliminary results

LAGEOQOS II: residuals vs thermal effects in the rate of the inclination
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Conclusions

* We have developed a new general model LATOS to manage the
thermal thrust acceleration acting on the satellites LAGEOS and
LAGEOS II

* We presented the preliminary results for the thermal thrust
accelerations on LAGEOS Il based on the new model

* These results are in good agreement with the orbital residuals

* Thermal accelerations determined from a reliable model may reduce
the use of empirical accelerations in the satellites' POD, with possible
Improvements in

» Geophysical products
» Fundamental physics measurements
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Mass and moments of inertia...
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Mass and moments of inertia...

* We reconstruct information about the structure, the material used and the moments of inertia
of the two LAGEOS

* We built a 3D-CAD model of the satellites structure useful for finite element-based analysis

* We also solve for contradictions and overcome several misunderstanding present in the
historical literature of the older LAGEOS (carefully re-analyzing the earlier technical documents)

LAGEOS




Mass and moments of inertia...

Table 3

computed in the present work with normalized densities.

Mass and moments of inertia of LAGEOS and LAGEOS II to be used in the future. The masses are the one measured. The moments of inertia are those

Satellite Mass (kg) Moments of inertia (kg mj'j

M Ly I, I..
LAGEOS flight arrangement 406.97 11.424+0.03 10.96 £0.03 10.96 £ 0.03
LAGEOS II flight arrangement 405.38 11.454+0.03 11.00 £ 0.03 11.00 £ 0.03

This work was also extended to LARES:

Table 1. Principal moments of inertia of LAGEOS, LAGEOS II and LARES in their flight arrangement.

Moments of Inertia (kg m?)

Satellite
I.- Lix Ly
LAGEOS 1142 +0.03 1096 +0.03 10.96+0.03
LAGEOSTIT 1145+0.03 11.00+=0.03 11.00=+0.03
LARES 477 +0.03 477 +0.03 4.77 +0.03

The two LAGEOS have almost the same
oblateness of about 0.04

LARES is practically spherical in shape,
even if an oblateness as small as 0.002 is
however possible




The LASSOS model...
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The LASSOS model...

The model for the magnetic torque. Since we are working with
conductive satellites moving and rotating in the Earth’s magnetic field
B, a magnetic moment m will be induced in their body and,
consequently, a torque M, will be applied:

M ,g =mXB

In previous works, LAGEOS was modeled as a conducting sphere
rotating in a static magnetic field

* The value of the constant magnetic field was computed averaging the magnetic
field over the entire orbit of the satellite




The LASSOS model...

This solution, which is completely valid in a quasi-stationary field, can
be suitably used as long as the rotation period of the satellite is much
shorter than its orbital period as well as of the Earth’s rotation period,

but it could produce wrong results when is used in slow-spin
conditions.
Trot < Torb Trot < TEB

In order to obtain a more general expression of the magnetic torque we
faced the problem to find an easily integrable expression for the torque
acting on a conducting sphere rotating in an alternating magnetic field.




The LASSOS model...

LASSOS Spin Model: results for LAGEOS I
LArase Satellites Spin mOdel Solutions (LASSOS)

Spin Orientation: o, 6

Blue = LASSOS model for the rapid-spin
Red = LASSOS general model
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The LASSOS model...

LASSOS Spin Model: results for LAGEOS I

LArase Satellites Spin mOdel Solutions (LASSOS)

Andrés de la Fuente, J.1., 10 g

Rotational Period: P

Blue = LASSOS model for the rapid-spin
Red = LASSOS general model
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The LASSOS model...

TABLE 1. Mechanical parameters used in the equations: mo-
ments of inertia I, ray R and offset h of the satellites.

LAGEOS LAGEOS 11 LARES
I [kgm?| 10.96 + 0.03 11.00+0.03  4.76 +0.03
I,[kg m?] 10.96 + 0.03 11.00+0.03  4.76 +0.03
I.[kgm?| 11.42 +0.03 1145+0.03 477 +0.03
Rlcm] 30.0 30.0 18.2
heem] 0.000 0.000 0.000
hy[cm] 0.000 0.000 0.000

h, [cm] 0.040 0.055 0.000

TABLE III.  Optical parameters used in the equations: radiation
coefficient Cg and reflectivity difference between the hemi-
spheres Ap of the satellites.

LAGEOS LAGEOS 11 LARES
Cr 1.13 1.12 1.07
Ap 0.013 0.012 0

TABLE 1I. Electromechanical parameters used in the equa-
tions: dimensionless magnetic factors ' and p”, electrical
conductivity ¢ and the relative magnetic permeability p,.

LAGEOS LAGEOS 11 LARES
f <1072 <1072 l

p 0.22 0.23 l

ols] 2.37 x 10V 2.38 x 107 5.1 x 10'¢
Uy — 1 22x%x 1073 2.2x 1073 3.3 x 1077

TABLEIV. Spin initial conditions: reference epoch in Modified
Julian Date (MJD), rotational period P, right ascension RA and
declination dec.

LAGEOS LAGEOS 11 LARES
Epoch [MJD] 42913.5 48918 55970
P [s] 0.48 0.81 11.8
RA [degree] 150 230 186.5

dec |degree] —68 —-81.8 -73
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Abstract: Recent results of the LARASE research program in terms of model improvements and
relativistic measurements are presented. In particular, the results regarding the development of
new models for the non-gravitational perturbations that affect the orbit of the LAGEOS and LARES
satellites are described and discussed. These are subtle and complex effects that need a deep
knowledge of the structure and the physical characteristics of the satellites in order to be correctly
accounted for. In the field of gravitational measurements, we present a new measurement of the
relativistic Lense-Thirring precession with a 0.5% precision. In this measurement, together with
the relativistic effect we also estimated two even zonal harmonics coefficients. The uncertainties of
the even zonal harmonics of the gravitational field of the Earth have been responsible, until now,
of the larger systematic uncertainty in the error budget of this kind of measurements. For this
reason, the role of the errors related to the model used for the gravitational field of the Earth in these
measurements is discussed. In particular, emphasis is given to GRACE temporal models, that strongly
help to reduce this kind of systematic errors.

Keywords: satellite laser ranging; LAGEOS satellites; perturbations; models; general relativity;
Lense-Thirring effect
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We present a new measurement of the Lense-Thirring effect on the orbits of the geodetic satellites
LAGEOS, LAGEOS II and LARES. This secular precession is a general relativity effect produced
by the gravitomagnetic field of the Earth generated by its rotation. The effect is a manifestation
of spacetime curvature generated by mass-currents, a peculiarity of Einstein’s theory of gravitation.
This measurement stands out, compared to previous measurements in the same context, for its
precision (=~ 7.4 x 107%) and accuracy (~ 16 x 107%), i.e. for a reliable and robust evaluation of the
systematic sources of error due to both gravitational and non-gravitational perturbations. For this
new measurement, we have largely exploited the results of GRACE mission to significantly improve
the description of the gravitational field of the Earth, by also modeling its time dependence. In
this way, we strongly reduced the systematic errors due to the uncertainty in the knowledge of
the Earth even zonal harmonics and, at the same time, avoided a possible bias of the final result
and, consequently, of the precision of the measurement, linked to a non-reliable handling of the
unmodeled and mismodeled periodic effects.
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