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Region of raised seafloors that 
develops to the NNE (the 1400 km 
long Tore-Madeira Rise);

Youngest dated eruption occurred 
6-7ka ago;

Intraplate active volcanic 
archipelago;

Lies over a large (2500 x 4500 
km) upper mantle anomaly 
extending down to depths of 500 
km – Hoernle et al. 1995 global 
study.

Key questions

• Is Madeira´s volcanism fed by 
a deep-seated mantle plume?
• Do the Madeira and Canary 

hotspots have a common or 
distinct origin?
• What is the lithospheric nature 

of the corridor between the 
Canaries and the Atlas-
Gibraltar?

SKS Anisotropy; P and S Receiver Functions; H/V polarization analysis; Ambient Seismic Noise Tomography.

Figure adapted from Geldmacher & Hoernle, 2000

Introduction

In the framework of project SIGHT (SeIsmic and Geochemical constraints on the Madeira HoTspot system) we want to 
obtain a 3D model of SV-wave velocities of the crust and upper mantle of the Northeast Atlantic area encompassing 
Madeira and Canary Islands to the Atlas-Gibraltar zone, using seismic noise cross-correlations in the period range 2-100 s.
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Addressed with

Geological setting



Good azimuthal coverage;

Most of the interstation paths cross the ocean. 

What is the:

• Effect of the water and sediments in the Empirical Green 
Functions (EGF) and in the dispersion curves for paths crossing 
the ocean for short periods?

• Impact on retrieving  single mode dispersion curves?

?!
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3 km 4 km

Fundamental mode group velocities 
using:

S-transform (Ventosa et al., 2017)
Velocity range1.5 - 4.5 km/s;
Maximum frequency range 0.3 -0.5 

Hz

Compared with synthetic fundamental 
mode group velocities in laterally 
varying media
(Herrmann, 2013)

Land
Lodge and Helffrich (2006), Vinnik et al. (2012)

Ocean
Crust to a depth of 20 km - Pim et al. (2008)
Below - Carvalho et al. (2019)

Black - measurements; Red- synthetics

Carvalho et al. 2020 in prep. 
In the Cape Verde region 

What’s the problem?

Dispersion measurements in an oceanic environment – going on study*

Synthetic scenario



• Short period measurements -
Madeira to Canaries paths;
• Intermediate periods measurements 

- between islands and continent.

1D model - Vs

. Water

. Sediments

. Three layer crust

. Mantle

Rayleigh waves à no mode contamination in the short frequency range;
Love waves  à contamination in 0.02 – 0.03 Hz.
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Rayleigh waves à mode contamination in the short frequency range; 
Airy phase frequency related with water layer thickness;

Love waves  à contamination between 0.02 – 0.03 Hz.

Fundamental mode and overtones in an oceanic environment
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Computed by normal mode summation (Herrmann, 2013);
Source à vertical force;
Δ = 200 Km

Presence of a water layer  à has impact on the fundamental mode; 
first overtone dominate in the radial component. 

No water

complete seismogram;         fundamental mode seismogram;         1st overtone seismogram 

. Water (0 or 4 km)

. Sediments

. Three layer crust

. Mantle

Synthetic seismograms in oceanic paths – radial versus vertical components
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Conclusions

The influence of the water layer on both vertical and radial synthetic Rayleigh waves, as well 
as on higher-mode conversion and on the group velocities dispersion measurements cannot be 
neglected;

Although the fundamental mode dominates, the presence of the first overtones at short periods 
(typically below 8 seconds) show that specifying a given velocity range when retrieving group 
velocity can result in a mixture of modes. 

At short periods, the water has a dominant effect on ocean-continent laterally varying media.

Water layer thickness  – 4 km 
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