

Gateway to the Earth

Stochastic hydrogeological parameterisation and modelling of the Chalk of England

Marco Bianchi, Andrew G. Hughes, Majdi M. Mansour, Johanna M. Scheidegger, Christopher R. Jackson

EGU2020: Sharing Geoscience Online - Session HS8.1.1

Parameterisation in GW modelling

- Fluid flow and solute transport is controlled by the spatial distribution of few hydrogeological parameters (hydraulic conductivity, transmissivity, porosity, and storativity)
- Parameterisation is the task of generating "representative" distributions of hydrogeological parameters to be transferred to numerical grids for flow and transport simulations

https://www.egr.msu.edu/

Parameterisation workflow

Parameter field (e.g. K)

Goal-oriented parameterisation

- Reality is too complex, data are too scarce, computational constraints
- Simplifications of complex heterogeneity needed depending on modelling goal(s).
- Simplifications must maintain features that are relevant for a certain prediction goal whilst reducing less relevant complexity

Hydrostratigraphic interpretation based on hydrofacies

Uncertainty in parameterisation

Højberg et al. (2005)

- Conceptual model uncertainty
- Parameter uncertainty

The Chalk

- Fine grained white limestone
- Most important aquifer in Great Britain
- Accounts for more than half of GW used
- Complex flow regime (matrix + fractures + karst)

Variations of transmissivity in the Chalk

© NERC All rights reserved

T data

Approach for modelling T distribution in the Chalk

Confined Chalk

- Geostatistical structure imitating approach
 - Conditional SGSIM based on T data

Unconfined Chalk

- Combination of descriptive and structure imitating approaches
 - Deterministic component to account for higher T in valleys and lower T at interfluves
 - Stochastic component to adjust the determinist component to actual data at measurement locations

Results: simulated T field

Results: simulated T field

Close up of the mean T distribution in the River Avon basin

Close up of the mean T distribution in the River Test and River Itchen basins

Results: simulated vs calibrated T fields

Simulated mean T distribution in the River Test and River Itchen basins

Calibrated T distribution in a GW model (Entec UK Limited, 2005)

2D groundwater flow model

- 1000 m grid resolution (43,852 active cells)
- Simulated period: 1/1/1962 31/12/2014 (636 stress periods)
- Boundary conditions:
 - river leakage
 - springs
 - abstractions (licence rates, EA data probably copyrighted),
 - discharge to sea
 - recharge

Time variant monthly ZOODRM recharge model (Mansour and Hughes, 2004)

Hydraulic heads and river flow observations

Simulated hydraulic heads

Initial conditions (steady state simulation based on average recharge and average T)

Simulated transient heads

Simulated transient river baseflow

Conclusions

- First "basin scale" stochastic model of the Chalk
- Hybrid parameterization combining regional trends and local variability
- Ongoing work for applying the model to understand aquifer dynamics in relation to changes in anthropogenic and climatic stresses

