Supporting users to implement uncertainty of climate change information in adaptation studies

Gabriella Zsebeházi (zsebehazi.g@met,hu) and Beatrix Bán Regional Climate Modelling Group Hungarian Meteorological Service, Budapest

EGU 2020: Sharing Geoscience Online 4–8 May 2020

European Union Cohesion Fund

INVESTING IN YOUR FUTURE

- 1. Introduction:
 - a) Climate models and their uncertainties
 - b) Climate model data in action: its use in adaptation and mitigation measures (climate services)
- 2. The KlimAdat project and its communication and education pillar
- 3. Guidance on how to use uncertainty information of climate model
- 4. Summary

THE BASIS OF CLIMATE MODELLING

The behaviour of the Earth system to altered forcing is studied with global climate models (GCMs). Their typical horizontal resolution is 100-200 km

Temperature change [°C] by 2100 **RCP8.5** 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 1.5

Large scale information (e.g. circulation) is downscaled with regional climate models, which are applied on a limited area domain with finer resolution (10-25 km)

9 11

5

UNCERTAINTIES IN CLIMATE INFORMATION

Climate projection uncertainties are derived from three main sources

Quantifying uncertainties: simulations with different GCM-RCM combinations and with different antropogenic scenarios

(†)

ADAPTATION TO AND MITIGATION OF CLIMATE CHANGE – DATA IN ACTION

 Climate model data is often used as a basis of impact studies and decision making for adaptation and mitigation → cross-disciplinary approach

TRAINING AND EDUCATING USERS VIA SEVERAL CHANELS AT OMSZ

Annual workshops: direct information exchange with the users (e.g. on their needs regarding the climate service)

Brochures and guidance:

hands-on information about the proper use of climate model data, tailored to different type of users

1st topic: How to cope with

Let's see in it!

... in preparation

A GUIDANCE ON HOW TO USE EFFECTIVELY THE CLIMATE MODEL DATA WITH UNCERTAINTIES

- Target audience is grouped:
 - **1.** *Impact researchers, modellers* (e.g. a hydrologist who simulates river discharge)
 - Need large amount of data (usually bias adjusted and gridpoint data)

- 2. Engineers, local planners (e.g. an engineer who makes calculations to design a new bridge)
 - Need small amount of data (usually for a given location) in the form of multiyear averages, climate indices, plots, tables, etc.
- Input: 12 GCM-RCM combinations of the Euro-CORDEX initiative
 - Period: 1971–2100
 - Anthropogenic scenarios: RCP4.5 (optimistic) and RCP8.5 (pessimistic)
 - 24 simulations were investigated

		R	Regional climate model						
		ALADIN53	RCA4	CCLM-4-8-17	RACM022E	REMO2009	WRF331	HIRHAM5	Total
Global model	CNRM-CM5	х	х						2
	MPI-ESM-LR		х	x		х			3
	HadGEM2-ES		х		х				2
	IPSL-CM5A		х				х		2
	EC-EARTH		х		х			х	3
Total		1	5	1	2	1	1	1	12

QUESTION 1: HOW MANY CLIMATE MODEL SIMULATIONS SHOULD WE CONSIDER?

Advice for the researcher:

- A representative subset of the whole ensemble (but at least two simulations) should be used
- Different simulations can be representative for different variable, season, etc. → a single subset may not be useful for every tasks

Advice for the planner:

- The ensemble should highlight the different sources of uncertainties
- Probabilistic information can support decision making

Temperature change for Hungary (reference: 1971–2000)

QUESTION 2: CAN WE APPLY THE MUTLIMODEL-MEAN?

Advice for the planner:

- Certain entities maybe sensitive or resilient to climate change (low and high tails of ensemble distribution can be important)
- If **positive and negative changes** are possible (e.g. for precipitation), the ensemble average does not contain information about these alternatives

Dots indicate those gridpoints where the 75% of simulations agree on the sign of change

However if we look at the whole ensemble, the change can be between (-15)–20 %

QUESTION 3: HOW TO DISTILL INFORMATION FROM CLIMATE MODEL ENSEMBLE?

• When the spatial distribution of climate change is of interest, we can portray either **gridpoint quantiles** or **probabilistic maps**

6.5

6

- Central-Hungary may expect the smallest changes
- Larger temperature increase in the North-Eastern part of Hungary

We specify the option (i.e. precipitation decrease) a priori, to quantify its probability

Left: summer precipitation change (%), right: probability (%) of decrease. Period: 2071–2100

TAKE HOME MESSAGES

Simulation uncertainties must be quantified and considered in adaptation and mitigation Synthetized information is needed to make decisions in adaptation and mitigation Users' voice

synthetized information ≠ simplified information

(we can do better than simply giving the ensemble mean or a yes/no answer)

Consultation and consultants are needed between climate researchers and users

Thank you very much for your attention!

The Klimadat project is implemented between 2016 and 2021 and funded by the Cohesion Fund and the European Union

Webpage: klimadat.met.hu/en

SZÉCHENYI2020Image: Signal de la constructionImage: Signal de la construction<