ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

Eva P. S. Eibl ${ }^{\mathbf{1}}$ (eva.eibl@uni-potsdam.de), G. Currenti² ${ }^{2}$ J. Wassermann³, P. Jousset ${ }^{4}$, D. Vollmer ${ }^{\mathbf{1}}$, D. Contrafatto ${ }^{2}$, G. Larocca ${ }^{2}$, D. Pellegrino ${ }^{\mathbf{2}}$, M. Pulviventi ${ }^{2}$, S. Yuan ${ }^{\mathbf{3}}$ 1: Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany 2. INGV, Catania, Italy
3. Geophys

GFZ
4: GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany

9. Future work

Compare \& test different codes for back azimuth \& phase velocity calculation using active sources
Compare with back azimuth calculation from 3C of seismometer
Compare rotation derived from broadband array to rotational sensor output Compare rotation derived from broadband array and DAS record
Determine Rayleigh wave velocities from the rotation rate

- Perform a simple inversion for the shallow velocity structure below the station - Tilt correction of seismic translational signals

3. Field site \& experiment on Etna

- Pizzi Deneri, INGV Observatory - 23 August - 23 September 2019 - 1 rotational sensor in the middle of - 26 station broadband seismic arra - 1 fibre-optic cable for Distributed Acoustic Sensing (DAS)
PI: P. Jousset
- Power:
- 3 solar panels,

140 W each
3 batteries,
70 Ah each

5. Methods: Back azimuth and phase velocity calculation

1) back azimuth calculation using only rotational sensor:

Extracting the principle polarization component from E \& N rotation rates Wassermann et al. (2020):
orthogonal distance regression focussed on SV-type or Rayleigh waves direction estimations using the horizontal rotational motion components only 180° ambiguity resolved: corresponding acceleration \& rotational seismograms are in phase for correct quadrant
Yuan et al. (2020):
singular value decomposition
covariance matrix of horizontal rotational components
2 components of eigenvector of largest eigenvalue used to calculate direction

Rayleigh waves:
Rotation rate $\omega_{z}=0$
Linear particle motion in horizontal plane (red line)
Arc tangent or orthogonal distance regression of ω_{x} and ω_{y} to find direction (blue arrow)
2) back azimuth calculation using 6 C :

Wassermann et al. 2016
orthogonal distance regression technique focussed on SH-type waves rotation of the horizontal components of the translational motion - regression on transverse acceleration \& vertical rotation rate for direction estimate ω_{z}

4. Full wavefield recording of

 an earthquake294 earthquakes in INGV earthquake catalog from 24.8-23.9.2019

Fevent on 5.9.2019 21:53:59 Seismograms \& spectrograms of ranslation (Trillium Compact) \& rotation (blueSeis-3A) Rotational motion caused by Rayleigh waves, SH or SV type waves, scattered energy of linearly polarised waves

Rotation rate Rotation rate $\omega_{\mathrm{z}}=\mathrm{v}_{\text {Transvere }} /-2 c$ Particle motion (red line) perpendicular to Otionola $\mathrm{V}_{\text {Transverse }}$ to find direction

6. Earthquake location using merely rotation, filtered 1-4 Hz

10. References

https://tinyurl.com/mab6pen Gruppo Analisi Dati Sismici, 2020. Catalogo dei terremoti
della Sicilia Orientale - Calabria Meridionale (1999-20202). INGV, Catania.
Lefêvre, H. C. (2014). The Fiber-Optic Gyroscope,
Second Ed., Artech House, London, United Kingdom.
Wassermann, J., A. Wietek, C. Hadziioannou, and H. Igel (2016). Toward a single-station approach for microzonation: Using vertical rotation rate to estimate Love-wave dispersion curves and direction finding, Bull. Seismol. Soc. Am. 106 no. 3, 1316-1330
Wassermann, J., Bernauer, F., Shiro, B., Johanson, I., Guattari, F., \& Igel, H. (2020). Six-axis ground motion measurements of caldera collapse at Kilauea Volcano, Hawai'i - More Data, More Puzzles? Geophysical Research Letters, 47, e2019GL085999. https://doi.org/10.1029/2019GL085999
Yuan, S., Simonelli, A., Lin, C., Bernauer, F., Donner, S., Braun, T., Wassermann, J., Igel, H., (2020) 6 Degree-of-freedom broadband groundmotion observations with portable sensors: Validation, local earthquakes,
signal processing BSSA

