Methane Emission Source Attribution and Quantification for Munich Oktoberfest

Jia Chen¹, Florian Dietrich¹, Sebastian Lober¹, Konstantin Krämer¹, Graham Legget², Hugo Denier van der Gon³, Ilona Velzeboer³, Carina van der Veen⁴, and Thomas Röckmann⁴

¹Environmental Sensing and Modeling, Technical University of Munich (TUM), Munich, Germany (jia.chen@tum.de)
²LI-COR Biosciences UK Ltd., UK
³Climate, Air and Sustainability, TNO, Utrecht, the Netherlands
⁴Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands
Oktoberfest Investigation 2018

(Chen et al. 2020)
Oktoberfest Investigation 2019

- Backpack measurements around and **inside** the festival premises
- Instrument: **LI-COR LI-7810 CH₄/CO₂ analyzer**
- Air sample **inside and outside** of the tents
 - Δethane/Δmethane ratio
 - Isotopes: δ¹³C, δD
- Computational fluid dynamics (CFD) simulation and Gaussian plume model for assessing emissions
Higher spikes and enhancements inside the festival area. Even higher concentration inside the tents.
ΔEthane/ΔMethane Ratios:

- Δethane/Δmethane ratio of the Munich gas network: 3.05 % (Sept. and Oct. 2019)
- Δethane/Δmethane ratios in tents: ~2.7%

→ ~90 % of the methane emissions in the tents are caused by leakage of natural gas
Isotopic Ratios: Clear Indication for Natural Gas

δ13C vs. 1/CH₄ in ppm

- Indoor: Red circles
- Outdoor: Blue circles
- Background: Green circles
- Subway: Black circles

Equation: $y = -5.36x - 45.45$

δD vs. 1/CH₄ in ppm

- Inside Tents: Red circles
- Festival Area: Blue circles
- Background: Green circles
- Subway: Black circles

Equation: $y = 192.10x - 188.60$

δD vs. δ13C

- Natural Gas
- Wetlands
- Biomass Burning
- Rice
- Ruminants
- Background
- Source (Keeling)
- Samples

EGU General Assembly 2020 | Jia Chen & Florian Dietrich
CFD Simulation (OpenFOAM)

Self-built 3D model of the Oktoberfest terrain

Meas. vs. Simulations (CFD and Gaussian plume)

High frequency components are better captured by CFD compared to Gaussian plume model
CFD Simulation Results – Outside and Inside Oktoberfest

→ CFD reproduces the spatial pattern inside and outside of Oktoberfest premises
Emission Number Comparison

2018

- During Oktoberfest: 6.7 ± 0.6 µg/(m²s)
- 1st week after Oktoberfest: 1.1 ± 0.3 µg/(m²s)

2019

- During Oktoberfest: 8.4 ± 0.5 µg/(m²s)
- 1st week after Oktoberfest: 2.8 ± 0.9 µg/(m²s)
Conclusion

- Oktoberfest is a notable methane source, although it is not included in the emission inventory.

- Oktoberfest methane emission flux is notable, ~10 times of that of Boston urban region (McKain et al. 2015).

- CFD simulations capture the spatial and temporal pattern of our concentration measurements.

- The emission is fossil fuel based. 90% of the emissions inside the tents come from natural gas.
Authors and references

Jia Chen
Professor of Environmental Sensing and Modeling
Technical University of Munich

Florian Dietrich
PhD student at the Professorship of Environmental Sensing and Modeling
Technical University of Munich

Sebastian Lober
Master student at the Professorship of Environmental Sensing and Modeling
Technical University of Munich

Konstantin Krämer
Master student at the Professorship of Environmental Sensing and Modeling
Technical University of Munich
