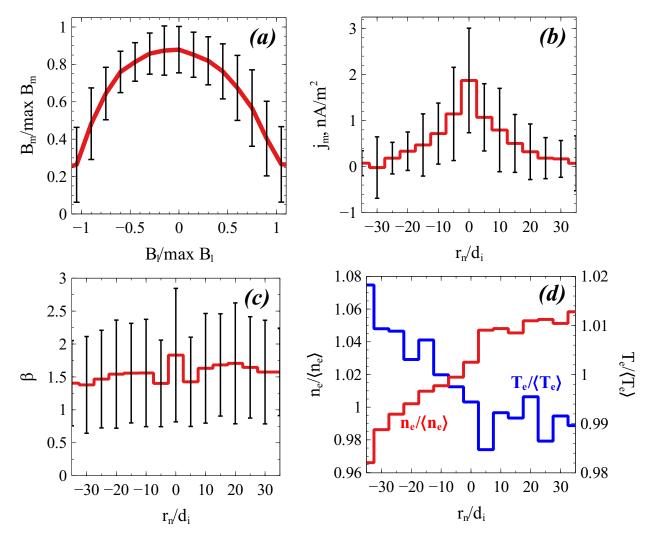


Kinetic models of current sheets in the solar wind*

Thomas Neukirch¹, Ivan Vasko^{2,4}, Anton Artemyev^{3,4}, Oliver Allanson⁵

- 1: School of Mathematics and Statistics, University of St Andrews, UK
- 2: Space Sciences Laboratory, University of California, Berkeley, USA
- 3: Institute of Geophysics and Planetary Sciences, University of California, Los Angeles, USA
- 4: Space Research Institute of Russian Academy of Sciences, Moscow, Russia
- 5: Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, UK
- (* see ApJ 891, 86, 2020)

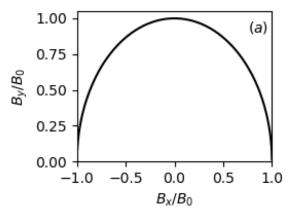
Observations

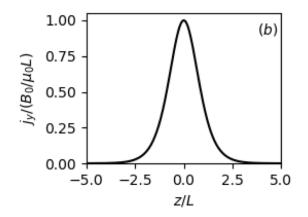


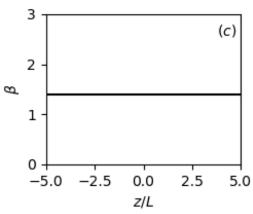
- Analysis of ARTEMIS observations of current sheets/discontinuities in the solar wind at about 1 AU found (Artemyev et al., 2018, 2019a, 2019b):
- Kinetic length scale (~ a few ion skin depths)
- Current sheet B-field and plasma- β consistent with approximately force-free configuration
- Systematic, anti-correlated, asymmetric variations of particle density and temperature across the current sheet

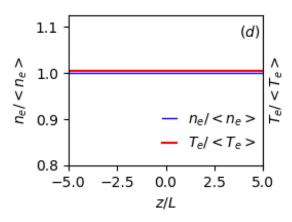
Can one find theoretical kinetic models for current sheets with these properties?

Kinetic equilibria with similar properties?









$$f_s = \frac{n_{0,s}}{\sqrt{2\pi v_{th,s}^2}} e^{-\beta_s H_s} \left[e^{\beta_s u_{ys} p_{ys}} + a_s \cos(\beta_s u_{xs} p_{xs}) + b_s \right]$$

- First attempt: Start with force-free kinetic current sheet equilibria based on DF by Harrison & TN, 2009 (see below)
- Leads to a Harris-sheet like force-free field (with a non-constant guide field) with features similar to the observed features
- Constant plasma- β
- Problem: particle density and temperature are also constant

(H_s , p_{xs} , p_{ys} = constants of motion)

(Asymmetric) Gradients in n and T?

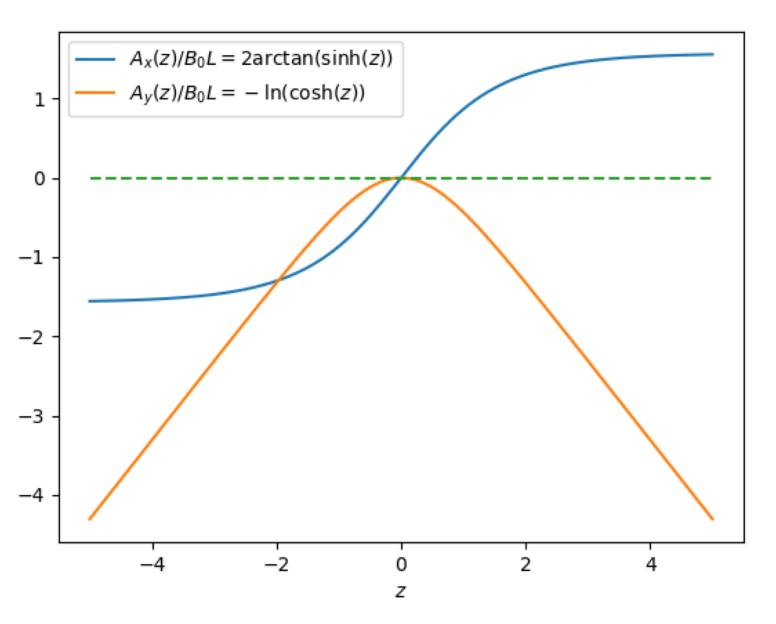
- Want to add gradients in n and T
- But want to keep current sheet force-free
- Density n and pressure P_{zz} are functions of A_x , A_y (and ϕ)
- Moments of

$$f_s(z, \mathbf{v}) = F_s(H_s, p_{xs}, p_{ys})$$

$$p_{xs} = m_s v_x + q_s A_x(z)$$

$$p_{ys} = m_s v_y + q_s A_y(z)$$

 Can we add additional terms to the DF to get the desired form for n and T?



- Need asymmetric/odd density profile in z
- A_y even \rightarrow need dependence on A_x that is odd as well
- Additional DF terms need to be odd functions of p_x
- However, no contribution to j_x wanted!

Additional term in DFs

$$F_{s,total} = F_{s,ff} + \Delta F_s$$

 $F_{s,ff}$: any force-free distribution function

$$\Delta F_s$$
: the additional term, e.g. $\Delta F_s \propto K_s(p_{x,s})G_s(H_s)$

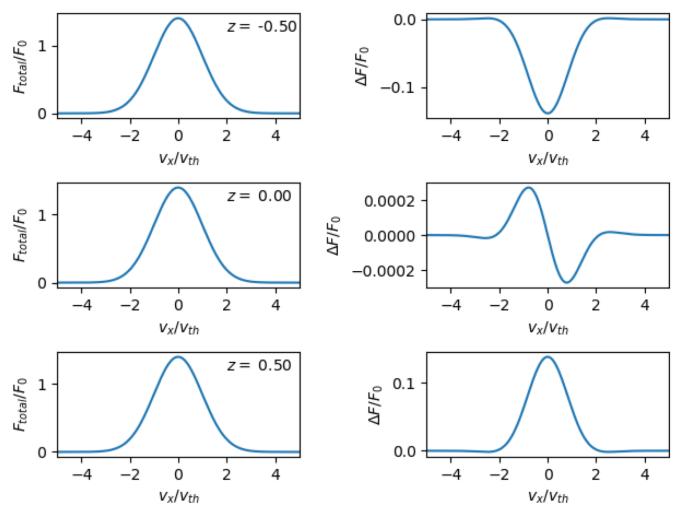
$$\Delta F_s$$
: the additional term, e.g. $\Delta F_s \propto K_s(p_{x,s})G_s(H_s)$
Conditions: $\int K_s(p_{x,s})G_s(H_s)d^3v \neq 0$, $\int v_xK_s(p_{x,s})G_s(H_s)d^3v$

Example: $K_s(p_{x,s}) \propto p_{x,s}$,

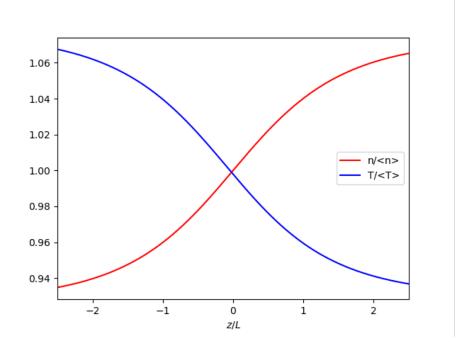
$$G_s(H_s) \propto \exp(-H_s/k_B T_{s,1}) - a_s \exp(-H_s/k_B T_{s,2})$$

There is actually a method of finding appropriate combinations systematically.

Example



 For parameters relevant for observations



Concluding remarks

Ad hoc method seems to work well for parameter values needed

One has to check individually that the total DF > 0!

• The problem becomes more complicated if one cannot arrange for ϕ = 0 (under investigation)

