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The AMOC, a key player for climate and society

Impact of a substantial change in the Atlantic Meridional Overturning Circulation (AMOC)
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Is the AMOC already weakening?

Paleodata (Thornalley et al. 2018)
and SST fingerprints (Caesar et al.
2018) say « possibly » (estimate of
3+1 Sv weakening or 15% decrease)

CMIP5 models exhibit -1.4 £1.4 Sv
of decrease between 2006-2015
and 1850-1900

No Greenland ice sheet (GrlS)
melting included in the historical
simulations

SST anomaly (K)

What is the forced signal from GrlIS
melting?

Relative AMOC strength (%)
Baseline: 2006-2015
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Experimental design

Use of Bamber et al. (2018) recent
reconstruction

Extension back to 1840 following Box and
Colgan (2013)

Overwrite runoff and calving in the the
Greenland region by those observation-based
fluxes

Use of 10 members of historical simulations
including this melting since 1920 (Melting
ensemble)

Comparison with historical simulations from
IPSL-CM6 starting from same initial
conditions (Historical ensemble)

Runoff and Solid Ice Fluxes

Fluxes (Sv)
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—— Greenland ice sheet runoff
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Melting — Historical ens. mean 1920-2014 SSS (95%)

Impact on SSS and
SST

 Spread of the SSS salinity negative
signal

O Positive SSS signal in the Arctic,
consistent with other « hosing

experiment » (e.g. Swingedouw et al.
2013)

[ Slight impact on SST with a cooling
signal in the subpolar gyre




Historical ens. mean (10mem) JFM MLD (max over 1920—-2014)

Convection sites
modifications

 There are two main convection
sites in IPSL-CM6A: one in the
Nordic Seas and one in the
Labrador Sea

[ Sporadic convection in the
Irminger Sea, which seems to be

reinforced by the addition of
melting Melting — Historical ens. mean JFM MLD 1920—2014
| 1 | | | 1 |

| | | | |

(95%)

[ Opposing effects from Labrador
and Nordic Seas vs Irminger Sea
for deep water formation




Impacts on the AMOC .

d The AMOC is slightly affected by the

freshwater trends

It weakens by less than 1 Sv
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SSS trends

Impacts on the centennial 7|
trend in active tracers JI
£ oo I'h “"‘ lI II
d We compare the simulations trends over o
1920-2014 with observations in the o
subpolar gyre (SPG) B T I S I S e e

 The SSS trend is negative in the Melting

- Ob ervatio

ensemble as in observation, but the ° SE g.
change is very slight and the spread very
large
d The same is true for SST trend. There is a
decrease in the trend in Melting ensemble, g H
more in line with observations, but the | l

change is very small, and the observations
are more likely explained by internal |
variability of the model.




Impacts on decadal variability in the SPG

[ The ensemble Melting is better reproducing the 1995 abrupt warming event in the
subpolar gyre than the Historical ensemble.

[ Not much difference concerning the 2015 cold blob
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Conclusions and outlooks

A Including a better representation of GrlS freshwater input impacts
the on-going trends in the North Atlantic

A It brings forced SSS trend in the same direction as observation (but
still compatible with internal variability) and slightly improve SST
trend (if forced...)

- A very slight impact on the AMOC (< 1 Sv)

J Observed trends over the historical era are more likely explained by
internal variability than by forced signal in the IPSL-CM6A-LR model

 An impact on decadal variability of the AMOC? Mechanisms need
to be eluciated.



Thank you!
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