Leader discharge stepping in dry and humid air

A. Malagón-Romero¹, A. Luque¹

¹ Instituto de Astrofísica de Andalucía (IAA), CSIC, Granada, Spain

Negative Leader Stepping

Second positive emissions of the molecular nitrogen


Dry Air VS Humid Air Simulations

Sequence of events:

Conditions: Constant current set to 0.25 A, dry air (left) and humid air 1.5% (right)

Humid air: Electric field enhancement in the space stem leading to a sharp increase of temperature and electron density.

Observations

In humid air, under relatively high electric fields (approx. 90 Td), $OH^-$ is the most abundant negative ion. This high abundance leads to fast detachment as water concentration increases.

Conclusions

In this work we have presented the results of our simulations for the evolution of a space stem precursor under dry and humid air conditions. These results show that the presence of water molecules enhances the electric field and the heating rate of the space stem, reaching 2000 K considerably faster than in dry air. This could make feasible the stepping of positive leader discharges under high humidity conditions.

Space Stem Precursor: Low Conductivity Region

Attachment Instability

Low conductivity region

**Negative Leader Stepping**

Second positive emissions of the molecular nitrogen


**Dry Air VS Humid Air Simulations**

**Sequence of events:**

**Conditions:** Constant current set to 0.25 A, dry air (left) and humid air 1.5% (right)

**Humid air:** Electric field enhancement in the space stem leading to a sharp increase of temperature and electron density.

**Observations**

In humid air, under relatively high electric fields (approx. 90 Td), $OH^-$ is the most abundant negative ion. This high abundance leads to fast detachment as water concentration increases.

**Conclusions**

In this work we have presented the results of our simulations for the evolution of a space stem precursor under dry and humid air conditions. These results show that the presence of water molecules enhances the electric field and the heating rate of the space stem, reaching 2000 K considerably faster than in dry air. This could make feasible the stepping of positive leader discharges under high humidity conditions.