EGU2020: Sharing Geoscience Online

Session HS8.2.12

The fate of infiltrated stormwater from infiltration basins to the stream: quantifying the impact of the urban karst

Abolfazl Poozana, Andrew Westerna, Meenakshi Aroraa, Matthew James Burnsb, Tim D. Fletcherb

^a Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia

^b School of Ecosystem and Forest Sciences, University of Melbourne, Victoria 3121, Australia

Urbanization

Impacts on hydrology:

- Increased stormwater runoff volumes
- Magnitude and frequency of peak flows
- Less groundwater recharge
- Soil and water pollution

Water Sensitive Urban Design

Filter Strips

Porous Pavements

Detention Ponds

Wetlands

Stormwater Control Measures (SCMs)

Aims:

- Reduce runoff volumes
- Recharge groundwater by infiltrating water to the sub-surface
- Reduce pollution discharges to receiving waters

- ✓ Infiltration basins are one of the most commonly used technologies to achieve those aims.
- ✓ Infiltration-based measures play a central role in addressing the low-flow impacts of urbanization to streams.

Conceptual model - Questions

- What is the fate of infiltrated stormwater?
- What is the impact of the urban karst on the fate of infiltrated stormwater?
 - Urban infrastructure, such as sewer pipes and telecommunication cables, are usually surrounded by high permeability gravel/sandy trenches collectively known as 'the urban karst'

Methodology

- Develop a model for one site, then try to generalize the results
- Modelling the impact of the urban karst on infiltrated stormwater using HYDRUS-3D

How to generalize the results?

Propose equations based on groundwater level and the hydraulic conductivities of soil and gravel/sand

$$\circ \frac{K_1}{K}$$

$$\circ$$
 1- $\left(\frac{Z_d}{Z_t-Z_W}\right)$

$$\circ \quad \text{Ratio} = \frac{(((Z_t - Z_w - Zd) \times W_t) - \pi r^2) \times K \times \tan \alpha}{(Z_t - Z_w) \times W_z \times K_1 \times \tan \beta}$$

- K: Hydraulic conductivity of gravel/sand
- K₁: Hydraulic conductivity of soil
- Z_w: Groundwater level

	Variable				Constant			
	Z _W (m)	K _t (m/day)	K _Z (m/day)	tanβ	Z _t (m)	W _t (m)	$W_{z}(m)$	tanα
Value 1	1.5	20	0.002	0.05	3	0.0825	80	0.0017
Value 2	0.5	10	0.02	0.03				
Value 3	2.5	1	0.2	0.07				

Results

Impact of urban karst= $\frac{\text{Inflow to boundary condition (see slide 5)}}{\text{Outflow from urban karst boundary condition (see slide 5)}} \times 100$

The higher the groundwater level,
the greater the effect of the urban karst on infiltrated stormwater.

Ratio =
$$\frac{(((Z_t - Z_w - Zd) \times W_t) - \pi r^2) \times K \times \tan \alpha}{(Z_t - Z_w) \times W_z \times K_1 \times \tan \beta}$$

Results

 The greater contrast between hydraulic conductivity of soil and gravel that covers urban infrastructure, the more impact of the urban karst on the infiltrated stormwater.

Conclusion

- Consider impact of the urban karst if goal of infiltration basin is to recharge the baseflow of the stream downslope.
- Basin location is important where urban infrastructure is located between potential infiltration basin sites and downslope stream.
- Impact of the urban karst should be investigated at each specific site before implementing infiltration systems; this study aims to provide simplified representations of impact for design.