

Exploring the existence of hydrological tipping points at the catchment scale

Fernando Jaramillo^{1,2}, S. Manzoni¹, Anne-Sophie Crepin^{3,4}, Juan Rocha^{3,4}, Lan Wang-Erlandson⁴, Sam Zipper⁵, Tom Gleeson⁶, Paolo D'Odorico⁷

- ¹ Department of Physical Geography, Stockholm University, Stockholm, Sweden
- ² Baltic Sea Centre, Stockholm University, Stockholm, Sweden
- ³ Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, Stockholm, Sweden
- ⁴ Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- ⁵ Kansas Geological Survey, University of Kansas, Lawrence, KS, USA
- ⁶ Department of Civil Engineering, University of Victoria, Victoria, British Columbia, Canada
- ⁷ Department of Environmental Science, Policy, & Management, UC Berkeley, USA

Freshwater changes

Tipping points of water availability?

Zipper et al., 2020

Objective

- Explore the existence of tipping points in the hydrological state of a hydrological catchment, specifically in the volume of water stored in the catchment-
- Tipping points where the response variable is a hydrological parameter representing water availability and the control variable can be any other socioecohydrological variable.

Methods

- Linear Stability Analysis (LSA; Joulin, 1979; Sole, 2011)
- Causal Loop Diagrams (CLD) and Stock and Flow Diagrams (SFD)
- Potential functions

What is a tipping point?

The set of equilibrium points (π_{μ}) occurring when no change in *S* takes place in time (t), i.e. dS/dt=0 as

Water mass balance

$$f_{\mu}(S) = dS/dt = P - R - E$$

$$\pi_{\mu} = \{S^* \mid f_{\mu}(S^*) = 0\}$$

where S* is a value of S when dS/dt = 0 and $dS*/dt = f_{\mu}(S^*)$

and

$$\lambda_{\mu} = \left[\frac{df_{\mu}}{dS}\right]_{S^*} > 0$$

Stable and Unstable Linear systems

Hydrologic dynamic system of water storage S where the input I(S) and output O(S) of the system are linear functions and the corresponding \mathbf{a}) stable and \mathbf{b}) unstable equilibrium points (S^*) .

Tipping points?

Adjusted from Laio et al., AWR, 2001

Causal Loop Diagram of the water budget

Tipping point in sociohydrological systems?

Potential functions

References

- Joulin, G., 1979. Linear Stability Analysis of Nonadiabatic Flames: Diffusional-Thermal Model. Combust. Flame 35, 139–153.
- Laio, F., Porporato, A., Ridolfi, L., Rodriguez-Iturbe, I., 2001. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Adv. Water Resour. 24, 707–723. https://doi.org/10.1016/S0309-1708(01)00005-7
- Solé, R., 2011. Phase Transitions. Princeton University Press.
- Zipper, S.C., Jaramillo, F., Wang-Erlandsson, L., Cornell, S.E., Gleeson, T.,
 Porkka, M., Häyhä, T., Crépin, A.-S., Fetzer, I., Gerten, D., Hoff, H., Matthews,
 N., Ricaurte-Villota, C., Kummu, M., Wada, Y., Gordon, L., 2020. Integrating
 the Water Planetary Boundary With Water Management From Local to Global
 Scales. Earths Future 8, e2019EF001377.

https://doi.org/10.1029/2019EF001377

Acknowledgements

STINT internationalization grant, Swedish Research Council (VR, project 2015-06503) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning FORMAS (942-2015-740)

