

Snowpack modelling in Central Italy: analysis and comparison of high-resolution WRF-driven Noah LSM and Alpine3D simulations

Edoardo Raparelli

edoardo.raparelli@uniroma1.it

University of Roma Sapienza Center of Excellence CETEMPS

Introduction

- Apennines mountain range: crosses the Italian peninsula from north-west to south-east
- Highest peaks: located in Central Apennines (Central Italy)
- Mediterranean sea: important source of moisture
- Substantial snow cover during winter and high regional variability
- Goal of the study: investigate the snow cover evolution in Central Apennines, using and comparing different snowpack models

Dataset and Methods

Observational Dataset

Study domain: Central Italy

Automatic Weather Station (AWS):

- 702 in study domain
- 13 AWS with snow depth sensor
- measure interval from 15 to 30 minutes

Automatic Weather Station (AWS) network Orange circles: AWS with snow depth sensor

Weather Research and Forecasting (WRF) Model:

- Mesoscale numerical weather prediction system
- Simulates atmosphere and ground surface conditions
- Configuration:
 - 3 two-way nested domains of 27 km, 9 km and 3 km resolutions (continental, national and regional size)
 - 33 vertical levels with first at 10 m
 - Land Surface Model: Noah
 - 4 soil levels (2 m total thickness)
 - 45 sequential simulations of 60 hours with 12 hours of spin-up
 - atmosphere initialized with NCEP 0.25° reanalysis
 - soil initialized with previous simulations (except for first simulation)
 - 2160 hours of atmosphere and soil simulation from 2018/12/01 to 2019/02/28
 - simulated data reprojected on a regular grid

Alpine3D:

- Three-dimensional snow cover and earth surface numerical model
- Includes modules for snow transport, radiation transfer and runoff
- Configuration:
 - input variables from WRF: air temp., relative hum., wind speed, incoming shortwave and longwave rad., precipitation amount and phase, ground surface temp.
 - 4 soil levels (2 m total thickness)
 - ground elevation from WRF digital elevation model
 - background albedo, soil roughness length and canopy from WRF landuse
 - single simulation of 2160 hours of snow cover and soil properties from 2018/12/01 to 2019/02/28
 - simulated data reprojected on a regular grid

Results

Atmospheric forcing evaluation

Cumulated Snowfall DJF 2018-2019 WRF-Alpine3D Simulation and AWS Observations

•

BY

(cc)

14/20

(CC)

16/20

	STDE		Bias		R	
	WRF	Alpine3D	WRF	Alpine3D	WRF	Alpine3D
HS [cm]	14.4	14.5	-10.2	-3.0	0.82	0.77
DeltaHS [cm]	4.5	4.5	-0.23	0.03	0.71	0.71

Discussion and Conclusion

- Good WRF scores for TA, RH, ISWR and PSUM
- Underestimation of VW at high elevations
- WRF cumulated snowfall higher than Alpine3D at high elevations and smaller at lower elevations
- WRF and Alpine3D negative bias for HS
- Alpine3D better than WRF to reproduce observed daily HS variation and HS densification rate
- Underestimation of the new snow depth: negative impact on the entire simulation

