# On the importance of fault modelling for seismic risk estimates

Oona Scotti and Francesco Visini

in collaboration with Lucilla Benedetti, Paolo Boncio, Joanna Faure Walker, Bruno Pace, Laura Peruzza, and Gerald Roberts

The ESC-FAULT2SHA Central Apennines WG



https://fault2sha.net/

D1606 EGU2020-19434

# The virtual talk in a few words

**Objective**: Improve seismic risk estimates and local population awareness in the presence of active faults **Example** In Central Italy ~ 400000 people live at less than 5 km from a known, mapped, active fault, capable of generating Mw>6

#### Strategy

Compute annual probability of collapse based on known activity of faults using the fault database compiled within the ESC FAULT2SHA WG (publication submitted Faure Walker et al., 2020).

#### Results

**PART 1**: Modelled EQ rates based on multi-fault ruptures are in reasonable agreement with catalogue and paleoseismic EQ rates. SHERIFS Model requires : double-GR frequency-magnitude distributions (FMD) , 20% reduction in geological slip rates and up to 6 sections (each section ~10km long ) rupturing together.

**PART 2**: Seismic risk profiles across the Central Apennines chain are radically different between Faultbased and area-based PSHA.

#### Conclusions

Considering activity of faults in seismic risk estimates better reflects the acquired geological knowledge and can radically change the perception of risk for the local population. © Authors. All rights reserved

# PART1

# Modelling earthquake rates on faults

Methodology used : SHERIFS V1.2\*

Inputs Geological Slip-rates and fault-trace geometries from the FAULT2SHA Central Apennines DB A list of Fault-to-Fault ruptures A shape for FMD of earthquakes (EQ)

- A background zone for computing observed EQ rates
- □ As many paleoearthquake studies as possible

\*Many thanks to Thomas Chartier for providing the updated version of SHERIFS: Open-Source Code for Computing Earthquake Rates in Fault Systems and Constructing Hazard Models SRL,-Chartier et al. 2019 doi. 10.1785/0220180332 SRL

# Area of Study



### 1-Raw database: trace of faults with slip rate measurements

fault trace, sections and slip rate data



All Class I-III Faults with slip rate measurement provided in the DB are considered

| Classes of Fault Activity |                                                                                                                                                                      |    |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| RED<br>Class I            | Dated displacement during Late<br>Pleistocene - Holocene (palaeoseismic<br>trench, modern earthquake,<br>cosmogenic dating)                                          |    |  |  |
| BLUE<br>Class II          | Evidence of Late-Pleistocene<br>displacement, but without in situ<br>dated Late-Pleistocene Holocene<br>displacement                                                 |    |  |  |
| GRAY<br>Class III         | Geologic (displaced Middle<br>Pleistocene deposits) or geomorphic<br>evidence of potential fault activity,<br>but this has not been confirmed as<br>Late-Pleistocene | 32 |  |  |

#### 2-Fault modelling: defining sections and building slip rates profiles

Hypothesis:

- Geol. Slip rates go to zero at Fault ends
- Considered section-dependent slip rate estimates
- NB: Geol. Slip rates reduced by 20% to account for post-seismic moment release/aseismic crrep
- Seismogenic depth, Dip of faults



Sx = ~10 km long sections

#### **3-Multifault ruptures: combining sections to create earthquake ruptures**

Hypothesis:

All rupture scenarios involving sections less than 5 km apart can rupture together

Maximum number of sections considered = 6

#### Exemple of multi-fault ruptures considered

Fucino\_1 Fucino\_2 Fucino\_3 OvindoliPezza\_1 Parasano\_1 SanSebastianc



#### 4- Shape of the Frequency-Magnitude Distribution (FMD)

Hypothesis:

Parametrize an FMD shape closely resembling that observed in the catalogue



#### SHERIFS Modelling results: comparison with catalogue EQ rates



### SHERIFS outputs: seismic vs aseismic slip rate

#### Input slip rates



#### Original slip rate profiles Reduced by 20%

| mm/yr |      |     |      |      |     |  |
|-------|------|-----|------|------|-----|--|
| 0.04  | 0.27 | 0.5 | 0.73 | 0.96 | 1.2 |  |

#### Original slip rate profiles

| mm/yr |      |      |      |     |      |  |
|-------|------|------|------|-----|------|--|
| 0.05  | 0.34 | 0.63 | 0.91 | 1.2 | 1.49 |  |

Output slip rates ==>EQ rates



« seismic slip rate »

|      |      | n/yr | /r   |      |      |
|------|------|------|------|------|------|
| 0.04 | 0.27 | 0.5  | 0.73 | 0.96 | 1.19 |

#### « seismic slip rate »

|      | mm/yr |      |      |     |     |
|------|-------|------|------|-----|-----|
| 0.05 | 0.34  | 0.63 | 0.91 | 1.2 | 1.5 |

Output slip rates ==>aseismic



#### « % aseismic slip rate »



#### « % aseismic slip rate »





# PART1: SHERIFS conclusions

Reasonably good agreement between EQ rates deduced from the catalogue and from paleo-seismic studies with EQ rates modelled with SHERIFS assuming:

- multi-fault ruptures (up to 6 10 km-long-segments),
- double-GR FMD
- a 20% reduction in the geological slip rates of the Central Apennines FAULT2SHA database

# PART 2 Modelling probability of collapse

## Ingredients

- 1. Hazard Curves
  - SHERIFS FMDs + 4 recent GMPE applicable to Italy
- 2. Risk
  - published fragility curves

### **Calculation Steps\***

- Fault-based Hazard curves
- Area based hazard curves using same FMD from SHERIFS
- Annual Probability of collapse

\*Using the Openquake Engine

# 1 - Fault Hazard at the localities



# 1-Hazard Curves: Fault vs Area (section A- A')



Seismic Hazard higher in the west where on average fault activity is higher compared to the eastern part of the study area

# 2- Published Fragility curves

Fragility curves (Del Gaudio et al., 2019) obtained as weighted averages of 14 building specific sets of curves with the percentages of occurrence of each class used as weights for the considered time intervals



Del Gaudio, C., De Martino, G., Di Ludovico, M. *et al*. Empirical fragility curves for masonry buildings after the 2009 L'Aquila, Italy, earthquake. *Bull Earthquake Eng* **17**, 6301-6330 (2019). https://doi.org/10.1007/s10518-019-00683-4

# 2 - Risk results – map

Area (A)/Fault (F) risk ratios AND pre1919/post2001 buildings seismic risk estimates



# 2- Risk results – section



W, C and E are locations where seismic hazard curves are shown on Slide 15

2- Risk results – Sensitivity Test to Class II-type faults

## Example at 5 localities along the southern Liri F. trace: Active (Liri F in the model) vs Inactive (Liri F. not modelled)



→ Crucial to confirm/infirm slip rates along Class II and III faults

# PART 2: RISK **preliminary** conclusions

- Seismic risk of post 2001 building is considerably reduced compared to pre 1919 building.
- Seismic risk profiles across the Central Apennines are remarkably affected by the use of a Fault-based approach.
- The western part of the study section is more at risk than the eastern part, where active faults are characterised by considerably lower slip rates.

Risk results presented here are preliminary, in particular along Class II and III faults, affected by great uncertainties (e.g. the Liri Fault where Geological investigations are still ongoing)

# **ONGOING WORK**

Continue the constructive feedback between Data providers and PSHA modelers within the Central Apennines FAULT2SHA ESC WG

- 1. How to best represent uncertainties in geological interpretations in faultDB and properly propagate them in Fault-PSHA (e.g. Liri Fault)?
- 2. Use finite displacement profiles to define tips properly, to show where ruptures have and have not occurred over several million years
- Add background seismicity → degree of completeness of the fault DB (i.e. Mt Vettore Fault region, the fault network is not completely characterized + Not all strands/sections/traces have been mapped)
- 4. Looping back with geologists/geodesists to refine the aseismic component of the fault model instead of a 20% reduction
- 5. ....Time-dependency, ...Physics-based approaches..