

Experimental assessment of interaction between boric acid enriched in boron-10 and cementitious matrix

Mojtaba Rostamiparsa*

Lithosphere Fluid Research Lab, Department of Petrology and Geochemistry, Eötvös Loránd University, Budapest, Hungary (*rostam@caesar.elte.hu)

Zsuzsanna Szabó-Krausz

MTA Premium Postdoctorate Research Program, Lithosphere Fluid Research Lab, Department of Petrology and Geochemistry, Eötvös Loránd University, Budapest, Hungary

Margit Fábián

Center for Energy Research, Budapest, Hungary

György Falus

Mining and Geological Survey of Hungary, Budapest, Hungary

Péter Völgyesi

Center for Energy Research, Budapest, Hungary

EGU General Assembly 2020 (4th May)

Introduction

- o Nuclear technology has many advantages and a significant disadvantage
- The main concern about nuclear technology is nuclear waste
- o The amount of waste is increasing in the world continuously

Trend of nuclear waste production (www.weforum.org)

Introduction - boric acid in nuclear power plants

- o NPPs1 are the main applicants of nuclear technology
- o Boric acid is used because of its excellent neutron absorbing properties
- Main waste stream at a typical NPP is boric acid waste (volumetric)
- o Production around 200 m³/yr boric acid waste in a typical PWR² (Pacey et al. 2011)

Generation of huge amount of boric acid waste in NPPs (www.kaeri.re.kr/)

^{1 -} Nuclear Power Plant

^{2 -} Pressurized Water Reactor

Introduction - waste management of boric acid

- o Boric acid is conditioned for easy, secure and safe handling, storaging and disposal
- o Common method for boric acid waste is stabilizing with cementitious matrix
- o **Boron has a high natural potential for releasing from the cementitious matrix** (Palomo and Palacios 2003)
- There are some approved methods for decreasing the leachability of boron

Packing the waste – Paks, Hungary

Cementation the packs – Bátaapáti, Hungary

Disposal at Bátaapáti, Hungary

Introduction - natural boric acid or enriched boric acid solution?

- Two ways for increasing the control ability of boric acid
 - \times Increasing the boric acid concentration (corrosion and leachability $\uparrow \uparrow$)
 - ✓ Using enriched acid boric (recently used technology)
- What is the meaning of enriched boric acid?

B-10 cross section is 3840 barns B-11 cross section is 0.005 barns

- Natural boric acid has a fixed ratio of boron isotopes: [(B-10)/(B-11)] = 0.248
- \triangleright Enriched boric acid in boron-10, i.e. changing the isotope ratio of [(B-10)/(B-11)] > 0.248

Questions - what is the effect of B-10 enrichment on cementitious matrix?

- o Currently we have information for the durability of the waste-form with NBA¹
- There is no published information about the effects of using EBA² in cementitious matrix
- What is the leachability and durability of waste-forms including EBA?

If the leachability of EBA/NBA is decreased in cementitious matrix, durability ↑↑

If the leachability of EBA/NBA is increased in cementitious matrix, durability $\downarrow\downarrow$

 $[\]bigcirc$

^{1 -} Natural Boric Acid (NBA)

^{2 -} Enriched Boric Acid (EBA)

Materials and methods

Materials

- **Ordinary Portland Cement (European standard EN 197-1)**
- Natural boric acid (NBA) and enriched boric acid (EBA) (> 99% B-10)
- Demineralized water

Leachability test

- o logical index for comparison of the durability of samples
- ASTM C1308-08 (2017) is an approved method for leachability test

Analytical methods

- **Output** OF COMMON OF COMM
- **O XRD, ATR-FTIR, SEM and Raman-spectroscopy for phase analysis**
- Geochemical modeling with PHREEQC code

First experiments — **sample preparation** (EK¹ & ELTE²)

- o Cement paste samples were prepared containing boric acid
- o Three w/c ratios of 0.35, 0.4 and 0.428 were used
- Samples were cured for 28 days
- **O Powdering for XRD and ATR-FTIR**
- **o Surfaces polished for SEM and Raman**

Mixing mortar with boric acid - EK

Removing samples from molds - EK

Preparing of samples for SEM - ELTE

Preparing of samples for XRD - ELTE

^{1 -} Hungarian center for energy research

^{2 -} Eötvös Loránd University

First experiments — leaching test

- o Cured samples were soaked in leachantes (DM water) for specified times
- o pH detected for each batch and solution samples collected

Liquid – solid interaction for leachability test - EK

Leachate pH-metery - EK

Preliminary results - phase analysis

- Alite, ettringite, larnite, brownmillerite, portlandite and inyoite are detected phases in the cementitious matrix by XRD
- **Output** The abundance of unhydrated phases are higher in lower w/c ratio samples

Cured sample -EK

Microscopic view of samples surface - ELTE

Preliminary results - phase analysis

- **Inyoite** (CaB₃O₃(OH)₅·4H₂O) is the only phase detected containing boron
- o Samples with higher w/c ratio, have lower concentration of inyoite
- Increasing of w/c can increase the boron release from the matrix

SEM analysis - ELTE

Inyoite 3D structure including boron (www.mineralienatlas.de)

Summary

- o Boric acid is one of the most important waste streams in all kind of NPPs
- Its stabilization for long storage and disposal is done by cementation process
- Many tests for durability of the cementitious matrix have been done already with natural boric acid (NBA)
- Some modern NPP's have started to using enriched boric acid (in B-10) in recent years, while there is no published data about stabilizing it in cementitious matrix
- EBA and NBA might have different leachability and durability properties in the cementitious matrix (Marschall and Foster 2016)
- Experiments have already started in this doctorate project to better understand and predict geochemical processes in EBA vs. NBA cementitious systems

References

- Basis, Protein Dry, Lactose Monohydrate, Pesticides Other, Insolubility Index, Test Method, Phenol Sulphuric, and Mean Result. 2007. "Certificate of Analysis Certificate of Analysis." 86(06151):1–3.
- Marschall, H., and G. Foster. 2016. Advances in Isotope Geochemistry- Calcium Isotopes.
- Pacey, Nigel, Ian Beadle, Anna Heaton, and Laura Newsome. 2011. *Chemical Discharges from Nuclear Power Stations: Historic Releases and Implications for Best Available Techniques (BAT)*. Environment Agency.
- Palomo, A., and M. Palacios. 2003. "Alkali-Activated Cementitious Materials: Alternative Matrices for the Immobilisation of Hazardous Wastes Part II. Stabilisation of Chromium and Lead." *Cement and Concrete Research* 33(2):289–95.