Exploration of the characteristics of landslide triggering rainfall using rain gauge and numerical weather prediction for Yogyakarta and Central Java, Indonesia

Ratna Satyaningsih1, Ardhasena Sopaheluwakan1, Danang Eko Nuryanto1, Tri Astuti Nuraini1, Arif Rahmat Mulyana2, Rokhmat Hidayat2, Mohammad Dedi Munir2, and Victor Jetten3

1Center for Research and Development, Indonesia Agency for Meteorology Climatology and Geophysics (BMKG), Jakarta, Indonesia (ratna.satyaningsih@bmkg.go.id)
2Sabo Technical Center, Ministry of Public Works and Housing, Yogyakarta, Indonesia
3Faculty of Geo-Information Sciences and Earth Observation (ITC), University of Twente, Enschede, The Netherlands

MOTIVATION

- The existing system for landslide early warning uses national rainfall thresholds, based on median of 1-day and 3-days accumulated rainfall.
- Use rainfall data derived from satellite products and rainfall forecast data with a spatial resolution of 0.25° x 0.25°, which is not adequate for catchment-scale landslide analysis.
- To define novel regional thresholds, based on hourly rainfall.
- Various thresholds represent the levels of exceedance probability.
- Exploration of the usage of the high-resolution numerical weather prediction (NWP) output in simulating the rainfall inducing the landslides for several historical landslide events.

DATA AND METHODS

- Landslide events inventory: Updated and collected landslide events, added the estimated time of the events from authorized and unauthorized sources. + the antecedent rainfall triggering the landslides (currently, only 2017-2019 events were analyzed)
- Construct rainfall thresholds using the relation of accumulated rainfall and duration (ED), equivalent to mean intensity and duration (ID).
- Frequentist method (Brunetti et al., 2010)

RESULTS

- Construct rainfall thresholds using the relation of accumulated rainfall and duration (ED), equivalent to mean intensity and duration (ID).
- Performance of the rainfall simulated by NWP (with 0.1°x0.1° of spatial resolution). Each date (dd/mm) near the points shows the start date of the simulation.
- For the two cases, the actual landslide events (x) are within the range of simulation members.

CONCLUDING REMARKS

- We demonstrated our attempt in improving the landslide early warning with a regional thresholds approach and in exploring the potential application of high-resolution NWP output in reproducing the rainfall triggering landslides.
- This is a preliminary exploration study, the inventory will be extended.