Solar Wind Induced Waves in the Skies of Mars

IONOSPHERIC COMPRESSION, ENERGIZATION, AND ESCAPE RESULTING FROM THE IMPACT OF ULTRA-LOW FREQUENCY MAGNETOSONIC WAVES GENERATED UPSTREAM OF THE MARTIAN BOW SHOCK

ABSTRACT: Using MAVEN and Mars Express, we show that transient phenomena in the foreshock and solar wind can directly inject energy into the ionosphere of Mars. We demonstrate that the impact of compressive Ultra-Low Frequency (ULF) waves in the solar wind on the induced magnetosheath drive compressional, linearly polarized, magnetosonic ULF waves in the ionosphere, and a localized electromagnetic “ringing” at the local proton gyrofrequency. The pulsations heat and energize the ionospheric plasma. A preliminary survey of events shows that no special upstream conditions are required in the interplanetary magnetic field or solar wind. Elevated ion densities and temperatures in the solar wind near to Mars are consistent with the presence of an additional population of Martian ions, leading to ion-ion instabilities, associated wave-particle interactions, and heating of the solar wind. The phenomenon was found to be seasonal, occurring when Mars is near perihelion. Finally, we present simultaneous multipoint observations of the phenomenon, with MEX observing the waves upstream, and MAVEN observing the ionosphere.

A QUEST FOR MORE EVENTS

We searched through 1547 other MAVEN orbits, finding 11 additional orbits where this penetration of solar wind ULF waves occurred. Waves were observed down to 160 km.

For one event, simultaneous multi-point observations were possible, with Mars Express recording the compressive ULF waves upstream in the solar wind, and MAVEN observing the waves in the ionosphere.

Unambiguous evidence that at unmagnetized planets, waves in the solar wind can directly impart energy into the ionosphere, resulting in compression, heating, and escape.

Found to be a seasonal effect, occurring when Mars is near Perihelion.

The brightening sun heats and expands the atmosphere beyond the bow shock.

Waves Crashing on a Cosmic Shoreline

Ultra-Low Frequency waves are a common phenomenon upstream of planetary bow shocks, and can down upon a planet like waves crashing upon a cosmic shoreline.

Extended Hydrogen Corona

At Earth, they penetrate the Magnetosheath and can stream down open field lines at the poles, and are detectable by ground-based ionospheric radar.

IMF

But what happens if a planet has no magnetic field?

We report MAVEN observations of the penetration ULF waves in the solar wind into the ionosphere of Mars.

Solar Wind

Compressive magnetosonic ULF waves form upstream of Mars and steepen as they approach the bow shock.

ULF waves steepen, pile up, and form the quasi-parallel bow shock and magnetosheath.

Collision with the magnetopause drives compressive magnetosonic ULF waves in the ionosphere.

Shaking the Skies of Mars: Impact on the Unprotected Ionosphere

The entire ionosphere is compressed and heated.

Bursts of time-dispersed ions are launched.

The ionosphere “rings” like a bell, at the local cyclotron frequency.

Ionospheric Escape is enhanced.

Timeline - 25th December 2016 - 02:00 to 02:50

MAVEN Orbit No. 4346 (x/z)

MAVEN Magnetometer (Ionosphere)

MAVEN Ion Spectrometer - MAVEN STATIC

MAVEN Electron Spectrometer - MAVEN SWEA

Notes:

- MAVEN and Mars Express, we show that transient phenomena in the foreshock and solar wind can directly inject energy into the ionosphere of Mars.
- We demonstrate that the impact of compressive Ultra-Low Frequency (ULF) waves in the solar wind on the induced magnetosheath drive compressional, linearly polarized, magnetosonic ULF waves in the ionosphere, and a localized electromagnetic “ringing” at the local proton gyrofrequency.
- The pulsations heat and energize the ionospheric plasma.
- A preliminary survey of events shows that no special upstream conditions are required in the interplanetary magnetic field or solar wind.
- Elevated ion densities and temperatures in the solar wind near to Mars are consistent with the presence of an additional population of Martian ions, leading to ion-ion instabilities, associated wave-particle interactions, and heating of the solar wind.
- The phenomenon was found to be seasonal, occurring when Mars is near perihelion.
- Finally, we present simultaneous multipoint observations of the phenomenon, with MEX observing the waves upstream, and MAVEN observing the ionosphere.

Extended Hydrogen Corona

Ultra-Low Frequency waves are a common phenomenon upstream of planetary bow shocks, and can down upon a planet like waves crashing upon a cosmic shoreline.

Extended Hydrogen Corona

At Earth, they penetrate the Magnetosheath and can stream down open field lines at the poles, and are detectable by ground-based ionospheric radar.

Extended Hydrogen Corona

But what happens if a planet has no magnetic field?

We report MAVEN observations of the penetration ULF waves in the solar wind into the ionosphere of Mars.

Extended Hydrogen Corona

Compressive magnetosonic ULF waves form upstream of Mars and steepen as they approach the bow shock.

Extended Hydrogen Corona

ULF waves steepen, pile up, and form the quasi-parallel bow shock and magnetosheath.

Extended Hydrogen Corona

Collision with the magnetopause drives compressive magnetosonic ULF waves in the ionosphere.

Extended Hydrogen Corona

The entire ionosphere is compressed and heated.

Extended Hydrogen Corona

Bursts of time-dispersed ions are launched.

Extended Hydrogen Corona

The ionosphere “rings” like a bell, at the local cyclotron frequency.

Extended Hydrogen Corona

Ionospheric Escape is enhanced.