Passive RFID, a new technology for dense and long-term monitoring of unstable structures.

EGU General assembly, May 2020

Mathieu Le Breton, Laurent Baillet, Éric Larose, Etienne Rey, Denis Jongmans, Fabrice Guyoton, and Philippe Benech

1Géolithe Innov, Géolithe, Crolles, France
2ISTerre, Université Grenoble Alpes, Grenoble, France
3G2ELab, Université Grenoble Alpes, Grenoble, France

© Authors. All rights reserved
Passive RFID technologies in earth science today

f = 125 kHz

- Near-field magnetic coupling
- Tag-reader distance < 0.5 m
- Typical applications: contactless payment, personal identification, animal identification
- Used to monitor riverine bedload

f = 866 MHz

- Far-field backscattering
- Tag-reader distance 0 to > 10 m
- Typical applications: tracking goods for logistics, transportation and retail
- Used to monitor landslide displacements

Why passive RFID tags to monitor the earth surface?

=> Deploy hundreds of low-cost wireless sensors for years

© Authors. All rights reserved
Bedload monitoring (125kHz tags)

Tags inserted in pebbles and manually tracked with a mobile reader.

Mature method, used in 50+ studies. Advantages:
- High recovery rate (vs. paint)
- Identification (vs. magnetic & radioactive tracers)
- Small, cheap, and no battery (vs. radio emitters)

Monitors the riverine bedload of hundreds of pebbles during years (here 833 tags for 3 years). (Bradley and Tucker, 2012)
Application to debris flow study (125 kHz tags)

(A) Position of tracked pebbles after being moved by (B) a debris flow in 2015. Each color represents a position where pebbles were initially inserted.

Graff et al., 2018

© Authors. All rights reserved
Accurate displacement monitoring using the phase difference (868 MHz tags)

Tags displacement measured by phase variations, with 868 MHz tags

\[\phi_2 - \phi_1 = -\frac{4\pi}{\lambda} \delta r \]

Nikitin et al., 2000

Phase ↔ Displacement
Application of RFID phase-based ranging on a landslide (Pont-Bourquin)

Le Breton et al., 2019
Does it work?

RFID technique validated + More stable than wire extensometer under rain and snow

Le Breton et al. 2019

20-m long extensometer and tag-reader distance here:

© Authors. All rights reserved
Cloud software for processing and visualization

Available today:

- Automatic RFID processing
- Interactive visualization
- Detailed data for each tag
- SMS/email alert on threshold

Operational on 3 landslides:

- Pont-Bourquin
- Harmalière
- Valloire

Ask me for a demo access:
> mathieu.lebreton@geolithe.com
Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide displacement monitoring

Mathieu Le Bretona,b,*, Laurent Bailleta, Eric Larosea, Etienne Reya,b, Philippe Benechc, Denis Jongmansa, Fabrice Guyotonb, Michel Jaboyedoffd

a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, HSTTAR, ISTerre, 38000 Grenoble, France
b Géolithe, 38920 Croissé, France
c Univ. Grenoble Alpes, IMEP-LAHC, 38000 Grenoble, France
d Institute of Geomatics and Risk Analysis, University of Lausanne, 1015 Lausanne, Switzerland

Abstract

Ground deformation monitoring at a local scale requires accuracy, along with dense spatio-temporal resolution. Radio-Frequency Identification (RFID) technology is proposed as an alternative to classical geodetic methods for monitoring displacements of a landslide. Passive RFID tags allow for a very dense resolution, both in time and space, at the scale of a 100-m-long surface. By deploying 19 passive RFID tags on a landslide for 5 months, this study validates the technique by comparison with laser total station and wire extensometer data. The accuracy of the RFID technique was 1 cm during normal weather and up to 8 cm during snow events. The results demonstrate that RFID tag tracking can monitor landslide displacements with multiple sensors at low cost, providing dense spatio-temporal data. This technique could potentially be used for other applications such as monitoring volcanic activity, buildings, unstable rocks or snow cover.

© Authors. All rights reserved