Investigating hydrological and biogeochemical controls within Irish alkaline fen habitat for protection and sustainable use

Elisabeth Bijkerk¹, Saheba Bhatnagar¹, Catherine Coxon¹, Paul Johnston¹ Shane Regan², Stephen Waldren¹, Laurence Gill¹

¹Trinity College Dublin, College Green, Dublin 2, Ireland ²National Parks & Wildlife Service, 90 North King Street, Dublin 7 May 7th, 2020

Contact: bijkerke@tcd.ie

Project: Ecometrics

- Ecometrics Research on ecological support metrics in GWDTE's
- EU Habitats Directive requires action for protection/conservation of Alkaline and *Cladium* fens
- Aim of study:
 - define hydrological and hydro chemical metrics that to indicate fen ecological conditions
- Four fen research sites: varying intact to degraded ecological conditions

Distribution of Fens in Ireland 2017

Fens in Ireland,

- Fen habitat in Republic of Ireland: 20 000 ha
- Fen habitat conserved: 763 ha
- Loss of habitat: 79%

Tory Hill

Scragh Bog (fen)

Pollardstown

Preliminary conceptual model as described in:

Evaluating the Influence of Groundwater Pressures on Groundwater-Dependent Wetlands

Site specifics*

Name	Pollardstown	Tory Hill	Scragh Bog (fen)	Ballymore
County	Kildare	Limerick	Westmeath	Westmeath
Area (ha)	266.1	76.9	23.9	43.1
Designation	SAC	SAC,	SAC	SAC
	NHA	pNHA		
Condition	Degraded	Degraded	Near intact	Intact
Damage,	Drainage	Drainage	Fertilisation	Diffuse
Threats and	Grazing	Infilling	Roads	Pollution
Pressures	Dumping	Grazing	Diffuse Pollution	
	Gravel quarry			

*as reported in Natura 2000 - standard data form

Instrumentation

- Five research sites
 - Ballymore, Scragh, Pollardstown A+D, Tory Hill
- Nine piezometer transects in a range of different fen conditions
 - Groundwater level and chemical monitoring
 - Measurements taken from piezometers and phreatic tubes
- Well and borehole survey outside fen
 - Groundwater and chemical monitoring
- Rainwater sampling

Data Collection

- 12 data collections between July 2018 and February 2020
- Measurements
 - Water levels: Manually + Loggers
 - Conductivity, oxygen, pH, temperature
- Water sampling
 - Nutrients: DRP, TP, NH₃, NO₂, TO_xN, TDN
 - major ions: Alkalinity (HCO₃), SO4, Cl, Ca, Na, Mg, K
 - Metals: Fe²⁺, Total Fe, Mn

Summary of Hydrochemistry

Data collected between July 2018 and December 2019

Total phosphorus(mg/l as P)

Total phosphorus (TP) is present in both phreatic tubes and groundwater piezometers in concentrations with means of 0.37 and 0.33 mg/L as P respectively. Scragh Bog (fen) stands out most for having the highest concentration of DRP in groundwater piezometers (0.26 mg/L as P), second is Tory Hill with 0.19 mg/L as P.

Both total dissolved nitrogen (TDN) and ammonia (NH₃) is found with higher concentrations in groundwater piezometers with means of 4.43 mg/L as N and 1.60 mg/L as N respectively. Again Scragh Bog (fen) stands out most displaying high concentration in samples taken from the groundwater piezometers for TDN and NH₃ with means of 6.88 mg/L as N and 2.98 mg/L as N respectively.

From the major ions, sulphate (SO₄) stood out most in samples collected from Tory Hill. Here concentrations with a mean of 89.0 mg/L SO₄ were found. This in in contrast with the overall mean for the other fen sites combined (17.5 mg/L SO₄). This might be due to the oxidised conditions in Tory Hill caused by a high degree of artificial drainage.

Preliminary Results Ballymore

- Hydrology
 - Discharge and effective rainfall
 - Water balance
 - Hydraulic gradients
- Hydrochemistry
 - Linkages to fen habitat

Ballymore - Instrumentation

 No effective rainfall in summer; fen relies on groundwater recharge in winter to maintain stable surface water level. See surface water logs below:

Waterbalance

- Catchment area: 0.88 km²
- Fen area: 0.23 km²

Hydrolo	gical y	year		Winte	r/Spri	ing		Sum	mer/	Autum	in
01-10-2018 to 30-0	9-2019			01-10-2018 to 01-0-	4-2019			02-04-2019 to 30-0	9-2019		
			Lost				Lost				Lost
	Total	Flux	from		Total	Flux	from		Total	Flux	from
	(m3)	(mm/d)	rainfall		(m3)	(mm/d)	rainfall		(m3)	(mm/d)	rainfall
Rainfall	916119	2.84		Rainfall	437856	2.73		Rainfall	478263	2.96	
Evapotranspiration	591348	1.70	64.5%	Evapotranspiration	129257	0.74	29.5%	Evapotranspiration	462091	0.75	96.6 %
Runoff	319821	1.02	34.9 %	Runoff	194225	1.21	44.4%	Runoff	125596	0.78	26.3%
Storage	4949	0.02	0.5%	Storage	114374	0.71	26.1 %	Storage	-109425	-0.68	- 22.9 %

- Water balance prepared on the assumption of no significant change on storage in fen between beginning and end of hydrological year
- Positive water balance in winter spring (net groundwater inputs) cf negative water balance in summer/autumn (net loss to groundwater?)
- However, hydrological changes made to fen could result in either flooding or drying out of the fen

Summer/winter hydraulic gradient and DRP comparison in transects

Results: Hydrology

Summer/winter hydraulic gradient and DRP comparison

Summer/winter hydraulic gradient and DRP comparison

Summer/winter hydraulic gradient and DRP comparison

Results: Hydrology

Hydrochemistry/ fen habitat linkages

Habitat	Natura 2000 (Annex 1)	Irish habitats (Fossitt)	
Schoenus-Carex fen	7230 Alkaline fens	PF1 Rich fen and flush	
Menyanthes pool	7140 Transition mires	PF3 Transition mire and quaking bog	
Carex-Menyanthes transition mire	7140 Transition mires	PF3 Transition mire and quaking bog	
Molinia cutaway	7120 Degraded raised bog	PB4 Cutover bog	
Filipendula-Holcus		GM1 Marsh	Results: Hydrochemis
Ulex scrub		WS1 Scrub	9

Habitat	Natura 2000 (Annex 1)	Irish habitats (Fossitt)
Schoenus-Carex fen	7230 Alkaline fens	PF1 Rich fen and flush
Menyanthes pool	7140 Transition mires	PF3 Transition mire and quaking bog
Carex-Menyanthes transition mire	7140 Transition mires	PF3 Transition mire and quaking bog
Molinia cutaway	7120 Degraded raised bog	PB4 Cutover bog
Filipendula-Holcus		GM1 Marsh
Ulex scrub		WS1 Scrub

Habitat	Natura 2000 (Annex 1)	Irish habitats (Fossitt)
Schoenus-Carex fen	7230 Alkaline fens	PF1 Rich fen and flush
Menyanthes pool	7140 Transition mires	PF3 Transition mire and quaking bog
Carex-Menyanthes transition mire	7140 Transition mires	PF3 Transition mire and quaking bog
Molinia cutaway	7120 Degraded raised bog	PB4 Cutover bog
Filipendula-Holcus		GM1 Marsh
Ulex scrub		WS1 Scrub

Conclusions

- Main input of nutrients supplied to fen are largely driven by groundwater in Ballymore
- Rainfall significant input to maintain surface water level in fen. Also acts as diluting agent in fen water.
- Fen surface water level is controlled by seasonal inputs.
- Fen vegetation appear to be resilient to climate fluctuations.
- Water balance and nutrient inputs are important to take into account with fen management

Remote sensing

Overview

- Objective
 - Indicate the relation between vegetation and water levels using satellite data
 - Use water level data to aid unsupervised habitat classification
- Classification of Scragh bog (fen) using habitat map produced in October 2019.
- Supervised classification --> Giving input from habitat map, defining training data; testing on the whole wetland.
- Unsupervised classification --> No input from habitat map; the clusters are formed on the basis of similar spectral patterns on the ground.

Methodology

- Satellite data used
 - Sentinel- 2 Multispectral Instrument Level -2 Ready to use data
 - 10 spectral bands
 - NDVI (normalised difference vegetation index)
 - NDWI (normalised difference water index)

FIELD DERIVED -GROUND TRUTH

Habitat map -October 2019

FOS_MAPPED

WD4 1. WD4 - Conifer plantation GS4 2. GS4 - Wet grassland WN7 3. WN7 - Bog woodland 4. PF1 - Rich fen and flush PF1 5. PF3 - Transition mire PF3 6. FS2 - Tall herb swamp FS2 7. FW2/WL2 - River/ tree line FW2/WL2 8. FS1 - Reed and large sedge FS1 swamps WN6 9. WN6 - Wet willows alder ash woodland

WD4 GS4 WN7 PF1 PF3 FS2

FS1

Satellite Map - March 2019 : SUPERVISED

WD4 GS4 WN7 PF1 PF3 FS2

FS1 WN6

Satellite Map - March 2019 : UNSUPERVISED

GS4 WN7 PF1 PF3 FS2

FS1

Satellite Map - October 2019 : SUPERVISED

WD4 GS4 WN7 PF1 PF3 FS2

FS1

Satellite Map - October 2019 : UNSUPERVISED

Addition of hydrometer data

 Using the moisture information as obtained using NDWI (normalised difference water index) for the wetland, and using surface water level data of the sampling points on ground - predicting an approximate surface water level for the entire wetland.

Satellite Map - October 2019 : UNSUPERVISED

Unsupervised Map using satellite + Hydrometer data - October 2019

Conclusions

- If the method is supervised, good mapping accuracy to up to 83%.
- The unsupervised classification (clustering) brings out new/unknown patterns.
 - Something important while making the actual maps; maybe the field could be visited at those points to confirm.
- Addition of hydrometer information leads to formation of better boundaries of the vegetation communities such as Alkaline fen.
 - Need more surface water level collection points in order to make a more robust model.

Thank you for reading