Investigating hydrological and biogeochemical controls within Irish alkaline fen habitat for protection and sustainable use

Elisabeth Bijkerk¹, Saheba Bhatnagar¹, Catherine Coxon¹, Paul Johnston¹, Shane Regan², Stephen Waldren¹, Laurence Gill¹

¹Trinity College Dublin, College Green, Dublin 2, Ireland
²National Parks & Wildlife Service, 90 North King Street, Dublin 7

May 7th, 2020

Contact: bijkerke@tcd.ie
Project: Ecometrics

- Ecometrics - Research on ecological support metrics in GWDTE’s
- EU Habitats Directive requires action for protection/conservation of Alkaline and Cladium fens
- Aim of study:
  - define hydrological and hydrochemical metrics that to indicate fen ecological conditions
- Four fen research sites: varying intact to degraded ecological conditions
Fens in Ireland

- Fen habitat in Republic of Ireland: 20,000 ha
- Fen habitat conserved: 763 ha
- Loss of habitat: 79%
Preliminary conceptual model as described in:

*Evaluating the Influence of Groundwater Pressures on Groundwater-Dependent Wetlands*

S. Kimberley & C. Coxon (2011-W-DS-5)
### Site specifics

<table>
<thead>
<tr>
<th>Name</th>
<th>Pollardstown</th>
<th>Tory Hill</th>
<th>Scragh Bog (fen)</th>
<th>Ballymore</th>
</tr>
</thead>
<tbody>
<tr>
<td>County</td>
<td>Kildare</td>
<td>Limerick</td>
<td>Westmeath</td>
<td>Westmeath</td>
</tr>
<tr>
<td>Area (ha)</td>
<td>266.1</td>
<td>76.9</td>
<td>23.9</td>
<td>43.1</td>
</tr>
<tr>
<td>Designation</td>
<td>SAC</td>
<td>SAC, pNHA</td>
<td>SAC</td>
<td>SAC</td>
</tr>
<tr>
<td>Condition</td>
<td>Degraded</td>
<td>Degraded</td>
<td>Near intact</td>
<td>Intact</td>
</tr>
<tr>
<td>Damage, Threats and</td>
<td>Drainage</td>
<td>Drainage</td>
<td>Fertilisation</td>
<td>Diffuse</td>
</tr>
<tr>
<td>Pressures</td>
<td>Grazing</td>
<td>Infilling</td>
<td>Roads</td>
<td>Pollution</td>
</tr>
<tr>
<td></td>
<td>Dumping</td>
<td>Grazing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gravel quarry</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*as reported in Natura 2000 - standard data form*
Instrumentation

- Five research sites
  - Ballymore, Scragh, Pollardstown A+D, Tory Hill

- Nine piezometer transects in a range of different fen conditions
  - Groundwater level and chemical monitoring
  - Measurements taken from piezometers and phreatic tubes

- Well and borehole survey outside fen
  - Groundwater and chemical monitoring

- Rainwater sampling
Data Collection

- 12 data collections between July 2018 and February 2020

- Measurements
  - Water levels: Manually + Loggers
  - Conductivity, oxygen, pH, temperature

- Water sampling
  - Nutrients: DRP, TP, NH$_3$, NO$_2$, TO$_x$N, TDN
  - major ions: Alkalinity (HCO$_3$), SO$_4$, Cl, Ca, Na, Mg, K
  - Metals: Fe$^{2+}$, Total Fe, Mn
Total phosphorus (TP) is present in both phreatic tubes and groundwater piezometers in concentrations with means of 0.37 and 0.33 mg/L as P respectively. Scragh Bog (fen) stands out most for having the highest concentration of DRP in groundwater piezometers (0.26 mg/L as P), second is Tory Hill with 0.19 mg/L as P.
Both total dissolved nitrogen (TDN) and ammonia (NH$_3$) is found with higher concentrations in groundwater piezometers with means of 4.43 mg/L as N and 1.60 mg/L as N respectively. Again Scragh Bog (fen) stands out most displaying high concentration in samples taken from the groundwater piezometers for TDN and NH$_3$ with means of 6.88 mg/L as N and 2.98 mg/L as N respectively.
From the major ions, sulphate (SO$_4$) stood out most in samples collected from Tory Hill. Here concentrations with a mean of 89.0 mg/L SO$_4$ were found. This is in contrast with the overall mean for the other fen sites combined (17.5 mg/L SO$_4$). This might be due to the oxidised conditions in Tory Hill caused by a high degree of artificial drainage.
Preliminary Results Ballymore

- Hydrology
  - Discharge and effective rainfall
  - Water balance
  - Hydraulic gradients

- Hydrochemistry
  - Linkages to fen habitat
▪ No effective rainfall in summer; fen relies on groundwater recharge in winter to maintain stable surface water level. See surface water logs below:
Waterbalance

- Catchment area: 0.88 km²
- Fen area: 0.23 km²

- Water balance prepared on the assumption of no significant change on storage in fen between beginning and end of hydrological year
- Positive water balance in winter spring (net groundwater inputs) cf negative water balance in summer/autumn (net loss to groundwater?)
- However, hydrological changes made to fen could result in either flooding or drying out of the fen

### Hydrological year

<table>
<thead>
<tr>
<th>Hydrological year</th>
<th>Winter/Spring</th>
<th>Summer/Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-10-2018 to 30-09-2019</td>
<td>01-10-2018 to 01-04-2019</td>
<td>02-04-2019 to 30-09-2019</td>
</tr>
<tr>
<td><strong>Total (m3)</strong></td>
<td><strong>Flux (mm/d)</strong></td>
<td><strong>Share of water balance</strong></td>
</tr>
<tr>
<td>Rainfall</td>
<td>916119</td>
<td>2.84</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>591348</td>
<td>1.70</td>
</tr>
<tr>
<td>Surface discharge</td>
<td>319821</td>
<td>1.02</td>
</tr>
<tr>
<td>Water balance</td>
<td>-4949</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Results: Hydrology
Summer/winter hydraulic gradient and DRP comparison in transects

August 2020

Results: Hydrology
Summer/winter hydraulic gradient and DRP comparison

February 2020

Results: Hydrology
Summer/winter hydraulic gradient and DRP comparison

Results: Hydrology
Summer/winter hydraulic gradient and DRP comparison

February 2020
Habitat

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Natura 2000 (Annex 1)</th>
<th>Irish habitats (Fossitt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schoenus-Carex fen</td>
<td>7230 Alkaline fens</td>
<td>PF1 Rich fen and flush</td>
</tr>
<tr>
<td>Menyanthes pool</td>
<td>7140 Transition mires</td>
<td>PF3 Transition mire and quaking bog</td>
</tr>
<tr>
<td>Carex-Menyanthes transition mire</td>
<td>7140 Transition mires</td>
<td>PF3 Transition mire and quaking bog</td>
</tr>
<tr>
<td>Molinia cutaway</td>
<td>7120 Degraded raised bog</td>
<td>PB4 Cutover bog</td>
</tr>
<tr>
<td>Filipendula-Holcus</td>
<td></td>
<td>GM1 Marsh</td>
</tr>
<tr>
<td>Ulex scrub</td>
<td></td>
<td>WS1 Scrub</td>
</tr>
</tbody>
</table>

Results: Hydrochemistry
### Nitrogen in fen habitats

#### Phreatic tube average concentrations

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Natura 2000 (Annex 1)</th>
<th>Irish habitats (Fossitt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schoenus-Carex fen</td>
<td>7230 Alkaline fens</td>
<td>PF1 Rich fen and flush</td>
</tr>
<tr>
<td>Menyanthes pool</td>
<td>7140 Transition mires</td>
<td>PF3 Transition mire and quaking bog</td>
</tr>
<tr>
<td>Carex-Menyanthes transition mire</td>
<td>7140 Transition mires</td>
<td>PF3 Transition mire and quaking bog</td>
</tr>
<tr>
<td>Molinia cutaway</td>
<td>7120 Degraded raised bog</td>
<td>PB4 Cutover bog</td>
</tr>
<tr>
<td>Filipendula-Holcus</td>
<td></td>
<td>GM1 Marsh</td>
</tr>
<tr>
<td>Ulex scrub</td>
<td></td>
<td>WS1 Scrub</td>
</tr>
<tr>
<td>Habitat</td>
<td>Natura 2000 (Annex 1)</td>
<td>Irish habitats (Fossitt)</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>------------------------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>Schoenus-Carex fen</td>
<td>7230 Alkaline fens</td>
<td>PF1 Rich fen and flush</td>
</tr>
<tr>
<td>Menyanthes pool</td>
<td>7140 Transition mires</td>
<td>PF3 Transition mire and quaking bog</td>
</tr>
<tr>
<td>Carex-Menyanthes transition mire</td>
<td>7140 Transition mires</td>
<td>PF3 Transition mire and quaking bog</td>
</tr>
<tr>
<td>Molinia cutaway</td>
<td>7120 Degraded raised bog</td>
<td>PB4 Cutover bog</td>
</tr>
<tr>
<td>Filipendula-Holcus</td>
<td></td>
<td>GM1 Marsh</td>
</tr>
<tr>
<td>Ulex scrub</td>
<td></td>
<td>WS1 Scrub</td>
</tr>
</tbody>
</table>

**Results: Hydrochemistry**
Conclusions

- Main input of nutrients supplied to fen are largely driven by groundwater in Ballymore.
- Rainfall significant input to maintain surface water level in fen. Also acts as diluting agent in fen water.
- Fen surface water level is controlled by seasonal inputs.
- Fen vegetation appear to be resilient to climate fluctuations.

- Water balance and nutrient inputs are important to take into account with fen management.
Overview

Objective

- Indicate the relation between vegetation and water levels using satellite data
- Use water level data to aid unsupervised habitat classification

Classification of Scragh bog (fen) using habitat map produced in October 2019.

- Supervised classification --> Giving input from habitat map, defining training data; testing on the whole wetland.
- Unsupervised classification --> No input from habitat map; the clusters are formed on the basis of similar spectral patterns on the ground.
Methodology

- Satellite data used
  - Sentinel-2 Multispectral Instrument - Level -2 - Ready to use data
  - 10 spectral bands
  - NDVI (normalised difference vegetation index)
  - NDWI (normalised difference water index)
1. WD4 - Conifer plantation
2. GS4 - Wet grassland
3. WN7 - Bog woodland
4. PF1 - Rich fen and flush
5. PF3 - Transition mire
6. FS2 - Tall herb swamp
7. FW2/WL2 - River/ tree line
8. FS1 - Reed and large sedge swamps
9. WN6 - Wet willows alder ash woodland
Ground Truth

Satellite Map - March 2019: UNSUPERVISED

FOS_MAPPED
- WD4
- GS4
- WN7
- PF1
- PF3
- FS2
- FW2/WL2
- FS1
- WN6
- UNKNOWN
Ground Truth

Satellite Map - October 2019: UNSUPERVISED
Addition of hydrometer data

- Using the moisture information as obtained using NDWI (normalised difference water index) for the wetland, and using surface water level data of the sampling points on ground - predicting an approximate surface water level for the entire wetland.
Satellite Map - October 2019: UNSUPERVISED

Unsupervised Map using satellite + Hydrometer data - October 2019
Conclusions

- If the method is supervised, good mapping accuracy to up to 83%.
- The unsupervised classification (clustering) brings out new/unknown patterns.
  - Something important while making the actual maps; maybe the field could be visited at those points to confirm.

- Addition of hydrometer information leads to formation of better boundaries of the vegetation communities such as Alkaline fen.
  - Need more surface water level collection points in order to make a more robust model.
Thank you for reading