

Grand Multi-Model Seasonal Forecasts in the SECLI-FIRM project

Andrea Alessandri (ISAC-CNR)

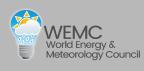
Contributions:

Franco Catalano, Matteo De Felice (ENEA)

Kristian Nielsen (UL)

Alberto Troccoli (UEA)

Marco Formenton, and Gaia Piccioni (ENEL)

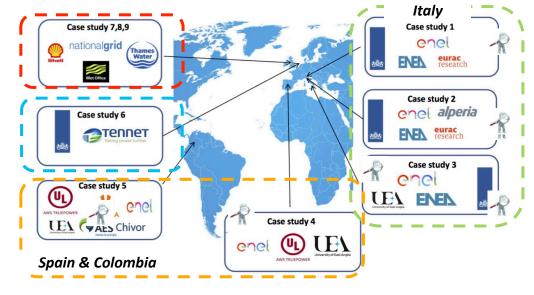

European Geosciences Union General Assembly 2020, Vienna, Austria, 04-08 May 2020



Outline

- ✓ SECLI-FIRM innovative approach: bridging the gap between climate forecasters and end-users decisions
- ✓ Optimization of climate prediction performance in SECLI-FIRM
 - The benefit of using Grand-MME seasonal forecasts
 Prediction of rainfall over Italy not an "hopeless case"
- ✓ Summary and Discussion

Bridging the gap between climate forecasters and endusers decisions Case study applications

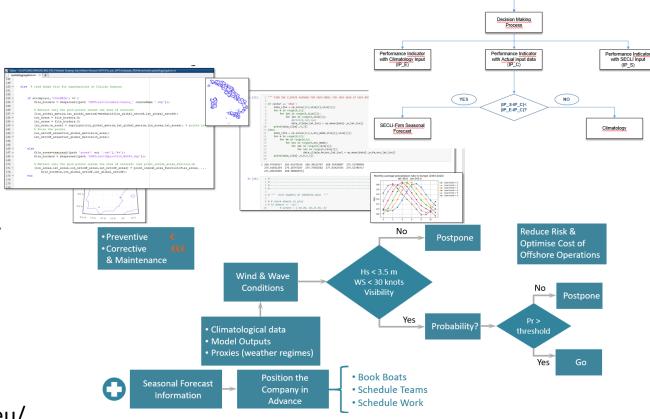


SECLI-FIRM case studies

	Case Study	Climate events	Geography	Sectoral impact	Co-designers
	CS1	Heat Wave 2015, and other similar extremes	Southern Europe	Energy –Thermal electricity plant cooling, demand model uncertainty	ENEL , ENEA, EURAC, KNMI
Italy	CS2	Dry Winter 2015-16 and other similar extremes	Northern Italy	Energy –Hydroelectric power production	ENEL , KNMI, ENEA, EURAC, Alperia
	CS3	Strong Winds March 2016 and other similar extreme	Southern Italy	Energy – Wind power production	ENEL , ENEA, KNMI, UEA
o & bia	CS4	Extreme Winds 2014- 15 and other similar extremes	Spain	Energy – Wind power production and balancing	AWS, MO, ENEL
Spain & Colombia	CS5	Strong El Niños	South America	Energy — Hydroelectric power production and other RE	AWS , UEA, AES Chivor, Celsia, ENEL
	CS6	Low Winds	North Sea	Energy – Offshore operations and maintenance planning	TenneT, KNMI

Case Study	Climate events	Geography	Sectoral impact	Co-designers	
CS7	Severe climate events in 'shoulder' months	North Sea	Energy – Offshore operations and maintenance planning	Shell, MO	
CS8	Anomalous winter conditions	UK	Energy – Winter electricity demand	National Grid, MO	
CS9	Dry Spring and Summers	UK	Water – Water use restrictions	Thames Water, MO	

More info at followin link: http://www.secli-firm.eu/



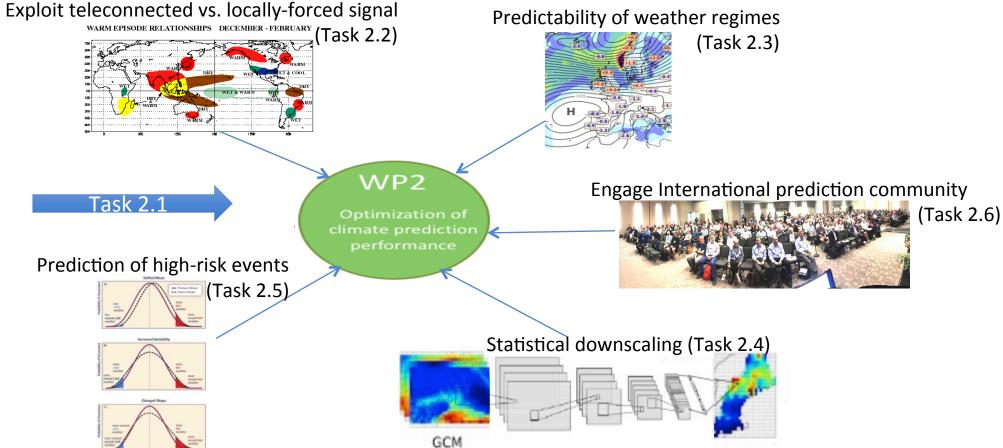
Bridging the gap between climate forecasters and endusers decisions

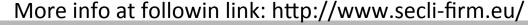
- Development of tools to produce tailored data.
- Formalisation of the business processes: Decision Trees.
- Introduction of calibrated probabilistic forecasts of suitable dichotomous events in business decision processes.

More info at followin link: http://www.secli-firm.eu/

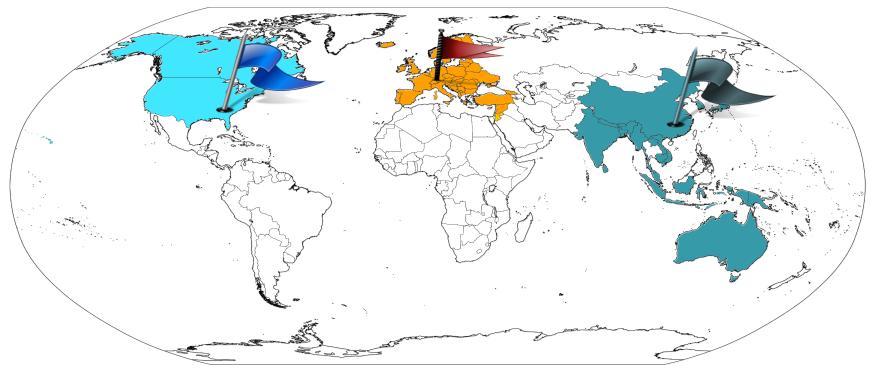
Actual Input data

Optimization of Seasonal Climate prediction in SECLI-FIRM The use of Grand-MME seasonal forecasts





Optimization of Seasonal Climate prediction in SECLI-FIRM (WP2)



Grand MME in SECLI-FIRM

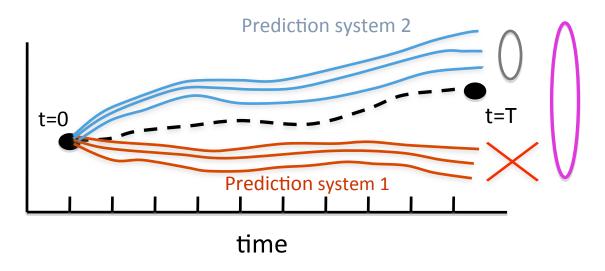
We are collecting a selection of prediction systems independently developed by (i) the European community (Copernicus C3S dataset; https://climate.copernicus.eu/seasonal-forecasts), (ii) the North American community (NMME dataset; http://www.cpc.ncep.noaa.gov/products/NMME) and (iii) the Asian-Pacific community (APCC dataset; http://www.apcc21.org/abt/model.do?lang=en).

More info at followin link: http://www.secli-firm.eu/



Model	Latest System	Horiz. Res.	Temporal Res.	# Ens. members: hindcast/forecasts	Hindcast Period	Ensemble Generation	
ECMWF	5	1° x 1°	Daily/Monthly	25/51	1993-2016	Burst	
UKMO	14	1° x 1°	Daily/Monthly	28/60	1993-2016	Lagged	
MF	6	1° x 1°	Daily/Monthly	15/51	1993-2016	Mixed	
DWD	2	1° x 1°	Daily/Monthly	30/50	1993-2016	Burst	
CMCC	3	1° x 1°	Daily/Monthly	40/50	1993-2016	Burst	
NASA	2	1° x 1°	Monthly	4/10	1981-2016	Lagged	
CCMA	2	1° x 1°	Monthly	10/10	1981-2018	Burst	
CCSM4	4	1° x 1°	Daily/Monthly	10/10	1982-2016	Burst	
NCEP	2	1° x 1°	Daily/Monthly	28/28	1982-2018	Lagged	
GFDL	B1	1° x 1°	Monthly	12/12	1980-2018	Burst	
JMA	5	1° x 1°	Daily/Monthly	10/10	1993-2016	Burst	
More info at followin link: http://www.secli-firm.eu/							

The benefit of using Grand-MME seasonal forecasts Exploitation of independent prediction systems



The rationale behind use of Multi-Models

MME can improve by:

- Combining the skill from the single models
- Improve ensembles dispersion and uncertainty consideration

- ➤ Independence of the Single models systems
- ► Degree of over-confidence (Hagedorn et al., 2005; Weigel et al., 2009; Alessandri et al., 2011)

How to measure independence among seasonal prediction systems?

Newly developed Independency metrics

One example is Brier score covariance (Bscov)

Starting from the definition of the Brier score (BS; Wilks, 2011) a new metric has been developed, named the Brier score covariance (BScov), which estimates the relative independence of prediction systems 1 and 2:

$$BS = \frac{1}{n} \sum_{i=1}^{n} (y_i - o_i)^2$$

$$BS_{cov} = \frac{\frac{1}{n} \sum_{i=1}^{n} (y_i^1 - o_i)(y_i^2 - o_i)}{\sqrt{BS^1 \cdot BS^2}}$$

Alessandri et al., 2020 (In Preparation)
Catalano et al., 2020 (In Preparation)

See Display D3421 (EGU2020-18283) By Catalano et al in this session

For a discussion of the results using independency metrics

Maximization of prediction skill using Grand-MME Case study over Italy: Water availability and drought for Energy Sector

Seasonal prediction of rainfall over Italy not an "hopeless case"

All combinations - SECLI-FIRM Grand MME - Italy

Seasonal hindcasts - 1° May start date - JJA Precipitation vs. ERA-5

Binary weighting model combinations, Corelation coeficient (r) with ERA5 Best combination: ['CMCC' 'MF' 'GEMN'] with r=0.56 Best European comb.: ['CMCC' 'MF'] with r=0.5 Best other models comb.: ['GEMN'] with r=0.376 Best single model: ['MF'] with r=0.402

All models with r = 0.154Grand MME – Optimal combination European C3S MME – Optimal combination 0.5 Best single model 0.4 Other models MME – Optimal combination Correlation coeficient 0.3 0.2 Grand-MME - All models 0.0 ['CMCC'] ['MF'] ['NCEP'] Best other comb. ['ECMF'] ['CANI'] ['UKMO'] Best NMME comb. Optimale comb. ['CCSM'] ['GEMN'] Other model(s) -0.1European model(s) ['NASA'] ['GFDB'] Full MME ['DWD'] ['JMA'] ---- Best single.



2

Number of models in combination

10

12

11

All combinations - SECLI-FIRM Grand MME - Italy

Seasonal hindcasts - 1° November start date - DJF Precipitation vs. ERA-5

Binary weighting model combinations, Corelation coeficient (r) with ERA5 Best combination: ['CMCC' 'CCSM' 'DWD' 'JMA'] with r=0.64 Best European comb.: ['CMCC' 'ECMF' 'DWD'] with r=0.538 Best other models comb.: ['GEMN' 'JMA'] with r=0.558 Best single model: ['DWD'] with r=0.498

All models with r = 0.3530.6 0.4 Correlation coeficient MEFM 🛤 0.2 0.0 ['MF'] ['NCEP'] Best other comb. ['CMCC'] ['ECMF'] ['CANI'] ['UKMO'] Best NMME comb. ['CCSM'] ['GEMN'] Optimale comb. Other model(s) -0.2['NASA'] ['GFDB'] ---- Full MME European model(s) ['JMA'] ['DWD'] ---- Best single. 10 11 12 2 Number of models in combination

Other models MME – Optimal combination
European C3S MME – Optimal combination

Grand MME – Optimal combination

Grand-MME - All models

Best single model

Summary and Discussion

- ightharpoonup SECLI-FIRM innovative approach: bridging the gap between seasonal climate ightharpoonup
 ig
 - > The use of Grand-MME is key strategy for the optimization of forecasts
- ☐ The SECLI-FIRM Grand MME can improve significantly the maximum skill.
 - > More skill is gained by combining independent systems
 - No need to be democratic to optimize skill: <u>a limited number of systems is</u> generally required for a given predictand (variable, region, season)
 - All prediction system are useful. <u>Each model</u> has its own distinction and <u>provides added skill for some variable</u>, region and season.
 - Seasonal prediction of rainfall over Italy is not an "hopeless case"
- Next/Ongoing: use Grand-MME for the optimization of tailored probabilistic forecasts of the dichotomous events identified as key predictands by endusers for the study cases.

