Grand Multi-Model Seasonal Forecasts in the SECLI-FIRM project

Andrea Alessandri (ISAC-CNR)

Contributions:
Franco Catalano, Matteo De Felice (ENEA)
Kristian Nielsen (UL)
Alberto Troccoli (UEA)
Marco Formenton, and Gaia Piccioni (ENEL)

European Geosciences Union General Assembly 2020, Vienna, Austria, 04-08 May 2020
The SECLI-FIRM project has received funding from European Union's Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

The Added Value of Seasonal Climate Forecasting for Integrated Risk Management

Outline

✓ SECLI-FIRM innovative approach: bridging the gap between climate forecasters and end-users decisions

✓ Optimization of climate prediction performance in SECLI-FIRM

➢ The benefit of using Grand-MME seasonal forecasts

Prediction of rainfall over Italy not an “hopeless case”

✓ Summary and Discussion
The SECLI-FIRM project has received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

Bridging the gap between climate forecasters and end-users decisions

Case study applications
The Added Value of Seasonal Climate Forecasting for Integrated Risk Management

SECLI-FIRM case studies

<table>
<thead>
<tr>
<th>Case Study</th>
<th>Climate events</th>
<th>Geography</th>
<th>Sectoral impact</th>
<th>Co-designers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>Heat Wave 2015, and other similar extremes</td>
<td>Southern Europe</td>
<td>Energy – Thermal electricity plant cooling, demand model uncertainty</td>
<td>ENEL, ENEA, EURAC, KNMI</td>
</tr>
<tr>
<td>CS2</td>
<td>Dry Winter 2015-16 and other similar extremes</td>
<td>Northern Italy</td>
<td>Energy – Hydroelectric power production</td>
<td>ENEL, KNMI, ENEA, EURAC, Alperia</td>
</tr>
<tr>
<td>CS3</td>
<td>Strong Winds March 2016 and other similar extreme</td>
<td>Southern Italy</td>
<td>Energy – Wind power production</td>
<td>ENEL, ENEA, KNMI, UEA</td>
</tr>
<tr>
<td>CS4</td>
<td>Extreme Winds 2014-15 and other similar extremes</td>
<td>Spain</td>
<td>Energy – Wind power production and balancing</td>
<td>AWS, MO, ENE</td>
</tr>
<tr>
<td>CS5</td>
<td>Strong El Niños</td>
<td>South America</td>
<td>Energy – Hydroelectric power production and other RE</td>
<td>AWS, UEA, AES Chivor, Celsia, ENEL</td>
</tr>
<tr>
<td>CS6</td>
<td>Low Winds</td>
<td>North Sea</td>
<td>Energy – Offshore operations and maintenance planning</td>
<td>Tennet, KNMI</td>
</tr>
</tbody>
</table>

More info at followin link: http://www.secli-firm.eu/
Bridging the gap between climate forecasters and end-users decisions

• Development of tools to produce tailored data.

• Formalisation of the business processes: Decision Trees.

• Introduction of calibrated probabilistic forecasts of suitable dichotomous events in business decision processes.

More info at following link: http://www.secli-firm.eu/
Optimization of Seasonal Climate prediction in SECLI-FIRM

The use of Grand-MME seasonal forecasts
The SECLI-FIRM project has received funding from European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

The Added Value of Seasonal Climate Forecasting for Integrated Risk Management

WP2

Optimization of climate prediction performance

Exploit teleconnected vs. locally-forced signal (Task 2.2)

Predictability of weather regimes (Task 2.3)

Engage International prediction community (Task 2.6)

Prediction of high-risk events (Task 2.5)

Statistical downscaling (Task 2.4)

More info at followin link: http://www.secli-firm.eu/
The SECLI-FIRM project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

The Added Value of Seasonal Climate Forecasting for Integrated Risk Management in SECLI-FIRM

We are collecting a selection of prediction systems independently developed by (i) the European community (Copernicus C3S dataset; https://climate.copernicus.eu/seasonal-forecasts), (ii) the North American community (NMME dataset; http://www.cpc.ncep.noaa.gov/products/NMME) and (iii) the Asian-Pacific community (APCC dataset; http://www.apcc21.org/abt/model.do?lang=en).

More info at followin link: http://www.secli-firm.eu/
The SECLI-FIRM project has received funding from European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

The Added Value of Seasonal Climate Forecasting for Integrated Risk Management

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMWF</td>
<td>5</td>
<td>1° x 1°</td>
<td>Daily/Monthly</td>
<td>25/51</td>
<td>1993-2016</td>
<td>Burst</td>
</tr>
<tr>
<td>UKMO</td>
<td>14</td>
<td>1° x 1°</td>
<td>Daily/Monthly</td>
<td>28/60</td>
<td>1993-2016</td>
<td>Lagged</td>
</tr>
<tr>
<td>MF</td>
<td>6</td>
<td>1° x 1°</td>
<td>Daily/Monthly</td>
<td>15/51</td>
<td>1993-2016</td>
<td>Mixed</td>
</tr>
<tr>
<td>DWD</td>
<td>2</td>
<td>1° x 1°</td>
<td>Daily/Monthly</td>
<td>30/51</td>
<td>1993-2016</td>
<td>Burst</td>
</tr>
<tr>
<td>CMCC</td>
<td>3</td>
<td>1° x 1°</td>
<td>Daily/Monthly</td>
<td>40/50</td>
<td>1993-2016</td>
<td>Burst</td>
</tr>
<tr>
<td>NASA</td>
<td>2</td>
<td>1° x 1°</td>
<td>Monthly</td>
<td>4/10</td>
<td>1981-2016</td>
<td>Lagged</td>
</tr>
<tr>
<td>CCMA</td>
<td>2</td>
<td>1° x 1°</td>
<td>Monthly</td>
<td>10/10</td>
<td>1981-2018</td>
<td>Burst</td>
</tr>
<tr>
<td>CCSM4</td>
<td>4</td>
<td>1° x 1°</td>
<td>Daily/Monthly</td>
<td>10/10</td>
<td>1982-2016</td>
<td>Burst</td>
</tr>
<tr>
<td>NCEP</td>
<td>2</td>
<td>1° x 1°</td>
<td>Daily/Monthly</td>
<td>28/28</td>
<td>1982-2018</td>
<td>Lagged</td>
</tr>
<tr>
<td>GFDL</td>
<td>B1</td>
<td>1° x 1°</td>
<td>Monthly</td>
<td>12/12</td>
<td>1980-2018</td>
<td>Burst</td>
</tr>
<tr>
<td>JMA</td>
<td>5</td>
<td>1° x 1°</td>
<td>Daily/Monthly</td>
<td>10/10</td>
<td>1993-2016</td>
<td>Burst</td>
</tr>
</tbody>
</table>

More info at followin link: http://www.secli-firm.eu/
The benefit of using Grand-MME seasonal forecasts
Exploitation of independent prediction systems
The rationale behind use of Multi-Models

MME can improve by:

- Combining the skill from the single models
- Improve ensembles dispersion and uncertainty consideration

- Independence of the Single models systems
- Degree of over-confidence

(Hagedorn et al., 2005; Weigel et al., 2009; Alessandri et al., 2011)
How to measure independence among seasonal prediction systems?

Newly developed Indenpendency metrics

One example is Brier score covariance (Bscov)

Starting from the definition of the Brier score (BS; Wilks, 2011) a new metric has been developed, named the Brier score covariance (BScov), which estimates the relative independence of prediction systems 1 and 2:

\[
BS = \frac{1}{n} \sum_{i=1}^{n} (y_i - o_i)^2
\]

\[
BScov = \frac{1}{n} \sum_{i=1}^{n} (y_i^1 - o_i)(y_i^2 - o_i) \sqrt{BS^1 \cdot BS^2}
\]

Alessandri et al., 2020 (In Preparation)

Catalano et al., 2020 (In Preparation)

See Display D3421 (EGU2020-18283) By Catalano et al in this session

For a discussion of the results using indepndency metrics
Maximization of prediction skill using Grand-MME
Case study over Italy: Water availability and drought for
Energy Sector

Seasonal prediction of rainfall over Italy not an “hopeless case”
The SECLI-FIRM project has received funding from European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

The Added Value of Seasonal Climate Forecasting for Integrated Risk Management

Seasonal hindcasts - 1° May start date - JJA Precipitation vs. ERA-5

All combinations – SECLI-FIRM Grand MME – Italy

Binary weighting model combinations, Corelation coefficient (r) with ERA5
Best combination: ‘[CMCC ‘MF ‘GEMN]’ with r = 0.56
Best European comb.: ‘[CMCC ‘MF]’ with r = 0.5
Best other models comb.: ‘[GEMN]’ with r = 0.376
Best single model: ‘[MF]’ with r = 0.402
All models with r = 0.154
The SECLI-FIRM project has received funding from European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

The Added Value of Seasonal Climate Forecasting for Integrated Risk Management

Seasonal hindcasts - 1° November start date - DJF Precipitation vs. ERA-5

All combinations – SECLI-FIRM Grand MME – Italy

Binary weighting model combinations, Corelation coefficient (r) with ERA5

Best combination: ['CMCC' 'CCSM' 'DWD' 'JMA'] with r = 0.64

Best European comb.: ['CMCC' 'ECMF' 'DWD'] with r = 0.538

Best other models comb.: ['GEMN' 'JMA'] with r = 0.558

Best single model: ['DWD'] with r = 0.498

All models with r = 0.353
Summary and Discussion

- SECLI-FIRM innovative approach: bridging the gap between seasonal climate forecasters and end-users decisions in the energy sector by employing a comprehensive set of techniques.
 - The use of Grand-MME is key strategy for the optimization of forecasts

- The SECLI-FIRM Grand MME can improve significantly the maximum skill.
 - More skill is gained by combining independent systems
 - No need to be democratic to optimize skill: a limited number of systems is generally required for a given predictand (variable, region, season)
 - All prediction system are useful. Each model has its own distinction and provides added skill for some variable, region and season.
 - Seasonal prediction of rainfall over Italy is not an “hopeless case”

- Next/Ongoing: use Grand-MME for the optimization of tailored probabilistic forecasts of the dichotomous events identified as key predictands by end-users for the study cases.