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Outline
v' SECLI-FIRM innovative approach: bridging the gap between
climate forecasters and end-users decisions

v' Optimization of climate prediction performance in SECLI-FIRM
» The benefit of using Grand-MME seasonal forecasts
Prediction of rainfall over Italy not an “hopeless case”

v' Summary and Discussion
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Bridging the gap between climate forecasters and end-
users decisions
Case study applications
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More info at followin link: http://www.secli-firm.eu/

* X %

- eurac s 7
WEM%N research alperla

< Meteorology Council

(E\ c~cr ENA O,

University of East Anglia AWS TRUEPOWER




- The Added Value of Seasonal Climate
%ﬁ RLI\/= Forecasting for Integrated Risk Management

Bridging the gap between climate forecasters and end-
users decisions

Development of tools to produce tailored data.

Formalisation of the business processes: Decision
Trees.

Introduction of calibrated probabilistic forecasts of . Optmise Cast of

Wind & Wave
Conditions

« Corrective
& Maintenance

Offshore Operations

suitable dichotomous events in business decision

No
processes.
Yes o Pr>
« Climatological data Probability? threshold
* Model Outputs
* Proxies (weather regimes)
Yes Go
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Optimization of Seasonal Climate prediction in SECLI-FIRM
The use of Grand-MME seasonal forecasts
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Optimization of Seasonal Climate prediction in SECLI-FIRM (WP2) 5&CL|

Exploit teleconnected vs. locally-forced signal

‘WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY (Ta S k 2 2 )

Optimization of
climate prediction
performance

Predlctlon of hlgh -risk events
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Grand MME in SECLI-FIRM SECLi

We are collecting a selection of prediction systems independently developed by (i) the European community
(Copernicus C3S dataset; https://climate.copernicus.eu/seasonal-forecasts), (ii) the North American community
(NMME dataset; http://www.cpc.ncep.noaa.gov/products/NMME) and (iii) the Asian-Pacific community (APCC

dataset;http://www.apcc21.org/abt/model.do?lang=en).

More info at followin link: http://www.secli-firm.eu
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m Latest System  Horiz. Res. Temporal Res. rﬁnigz's?figzzrsst:s Hindcast Period ggr?:gﬁ:;
ECMWF | 19 19 Daily/Monthly 25/51 1993-2016 Burst
UKMO | 19.x 1° Daily/Monthly 28/60 1993-2016 Lagged
MF 6 19 10 Daily/Monthly 15/51 1993-2016 Mixed
DWD | 2 19x 1° Daily/Monthly 30/50 1993-2016 Burst
cMCC 3 19x 1° Daily/Monthly 40/50 1993-2016 Burst
NASA | 2 19 19 Monthly 4/10 1981-2016 Lagged
CCMA 2 19.x 1° Monthly 10/10 1981-2018 Burst
ccsMa 4 19.x 1° Daily/Monthly 1010 1982-2016 Burst
NCEP 2 19.x 10 Daily/Monthly 28/28 1982-2018 Lagged
GFDL 19.x 1° Monthly 12/12 1980-2018 Burst
JMA 1°x 1° Daily/Monthly 10/10 1993-2016 Burst

More info at followin link: http://www.secli-firm.eu/
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The benefit of using Grand-MME seasonal forecasts

Exploitation of independent prediction systems
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The rationale behind use of Multi-Models EECLi

Prediction system 2
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time
MME can improve by:
= Combining the skill from the single models
= Improve ensembles dispersion and uncertainty consideration

L

»Independence of the Single models systems

>Degr ee of over-confidence (Hagedorn et al., 2005 ; Weigel et al., 2009; Alessandri et al., 2011)
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How to measure independence among 5&CL|

seasonal prediction systems? . v[va| RM

Newly developed Independency metrics
One example is Brier score covariance (Bscov)

Starting from the definition of the Brier score (BS; Wilks, 2011) a new metric has been
developed, named the Brier score covariance (BScov), which estimates the relative
independence of prediction systems 1 and 2:
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_— C—n)2
n '21 (YI 01)

1
HZin=1(Yi1 — Oi)(Yiz — 0j)

BScov = VBST - BS2

Alessandri et al., 2020 (In Preparation) See Display D3421 (EGU2020-18283) By Catalano et al in this session
Catalano et al., 2020 (In Preparation)

For a discussion of the results using independency metrics
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Maximization of prediction skill using Grand-MME
Case study over ltaly: Water availability and drought for
Energy Sector

Seasonal prediction of rainfall over Italy not an “hopeless case”
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All combinations — SECLI-FIRM Grand MME - Italy SECL

Seasonal hindcasts - 1° May start date - JJA Precipitation vs. ERA-5 1
Binary weighting model combinations, Corelation coeficient (r) with ERA5 I RM
Best combination: ['CMCC' '"MF' 'GEMN'] with r = 0.56
Best European comb.: ['CMCC' '"MF'] with r = 0.5
Best other models comb.: ['GEMN'] withr = 0.376

Best single model: ['MF'] with r = 0.402
All models with r = 0.154
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All combinations — SECLI-FIRM Grand MME - Italy SECL
Seasonal hindcasts - 1° November start date - DJF Precipitation vs. ERA-5 1 |RM

Binary weighting model combinations, Corelation coeficient (r) with ERA5
Best combination: ['CMCC' 'CCSM' 'DWD' 'JMA'] with r = 0.64
Best European comb.: ['CMCC' 'ECMF' 'DWD'] with r = 0.538
Best other models comb.: ['GEMN' 'JMA'] with r = 0.558
Best single model: ['DWD'] with r = 0.498
All models with r = 0.353
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Summary and Discussion EECLi

d SECLI-FIRM innovative approach: bridging the gap between seasonal climate L VFIRM
forecasters and end-users decisions in the energy sector by employing a
comprehensive set of techniques.

» The use of Grand-MME is key strategy for the optimization of forecasts

0 The SECLI-FIRM Grand MME can improve significantly the maximum skill.

» More skill is gained by combining independent systems

» No need to be democratic to optimize skill: a limited number of systems is
generally required for a given predictand (variable, region, season)

» All prediction system are useful. Each model has its own distinction and
provides added skill for some variable, region and season.

» Seasonal prediction of rainfall over Italy is not an “"hopeless case”

d Next/Ongoing: use Grand-MME for the optimization of tailored probabilistic
forecasts of the dichotomous events identified as key predictands by end-
users for the study cases.
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