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Abstract

Atmospheric boundary layer
top 1S a key parameter but
Its derivation i1s challenging.
This work experiments both
supervised and
unsupervised learning to
derive 1t. Case studies are
encouraging but two-year
comparison do not show
clear Improvement from
existing methods. However,
they are open-source and
have good prospects.

@ Introduction

Thermosphere

~ | » 2 sites (Brest and Trappes)
| - | » 2 years of data (2017-2018)

' » Co-located lidar and RS

’ Lidar: MlnlM PL (SigmaSpaCe)

# % p RS estimation: parcel method

(4) Two-year comparison

Mesosphere
Stratosphere

Mixing height derivation

from aerosol lidar using machine learning:
KABL and ADABL algorithms
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atmosphere, multiples fluxes and forcing
driving atmosphere.
complex
turbulence, fog, local circulation.
» Benefit to: air quality, renewable energy,
transportation, meteorological forecast...
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Why study boundary layer?

kscatter | BREST [2017/04/24
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How do we proceed?

»Lidar backscatter Is a proxy of the
aerosol
atmospheric boundary layer (ABL).

content, thus of the

like PUnsupervised classification: K-means
for ABL (KABL)
»Supervised classification: AdaBoost

for ABL (ADABL)
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@ Sensitivity analysis

Performance/speed comparison of estimators

® RandomForestClassifier ®
KNeighborsClassifier .‘i‘

DecisionTreeClassifier
AdaBoostClassifier AdaBoostClassifier
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0.990

0.985 0.995

Accuracy

Among several classifiers tested,
AdaBoost was chosen because It
has the best accuracy and speed
IS not critical.
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Sobol indices of KABL code parameter for various metrics
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Parameters

Influence of KABL's parameters
over several metrics was
estimated. The number of clusters
and the predictors are critical.

0.6

0.5

0.4

0.3

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Conclusions
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» Manufacturer's estimation
(INDUS): misses the morning
transition, good otherwise.

»KABL: most of the time
acceptable estimation, but many
jumps

»ADABL: catches
morning transition,

points around 12:00

very  well
few odd

Correlation

KABL ADABL INDUS

KABL ADABL INDUS

» This work attempts to derive boundary layer top from lidar backscatter measurements
with machine learning. Both supervised (ADABL) and unsupervised (KABL) algorithms

have been tried.

» Case study shows acceptable results despite few drawbacks.
» Two-year comparison with RS does not draw clear improvement from manufacturer's
algorithm. Results are different on the two sites: KABL and ADABL do not compare to RS

at Brest, but they do at Trappes.

» Diurnal cycles are similar for KABL and manufacturer's, ADABL reproduces too much the
cycle of the day it has been trained on (overestimated importance of time and altitude

predictors)
» Seasonal cycles are accepta

|| Rieutord et al. (2020), AM™
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nle at Trappes, but not at Brest, even for RS estimations

O) https://github.com/ThomasRieutord/kabl




