Determination of gaseous elemental mercury air-sea exchange in the Baltic Sea

ICOS Östergarnsholm

10 May – 20 June, 2017
Objectives

1. Quantify the Hg\(^0\) air-sea flux using the gas exchange model and micrometeorological methods

2. Compare Hg\(^0\) fluxes from coastal waters and the open sea

3. Investigate wind speed dependence of Hg\(^0\) gas transfer velocity
Gas exchange model

\[F_{Hg^0} = K_w \left(\frac{GEM}{H^'} - DGM \right) \]

\(\Delta \) partial pressure \(Hg^0 \)

- \(C_{DGM} \)
- Ambient \(Hg^0 \)
- Sea surface temperature
- Wind speed
- Atmospheric pressure
- Salinity

mass transfer velocity between water and air

Nerentorp et al., 2017
Gradient-based methods

\[F_{Hg^0} = - \frac{k \cdot u_* \cdot z}{\phi_h \left(\frac{Z}{L} \right)} \cdot \frac{\delta c_{Hg^0}}{\delta z} \]

\(Hg^0, CO_2, H_2O, \)

Temp, Humidity,

Solar rad.

\(Hg^0, CO_2, H_2O, \)

Temp, Humidity,

Solar rad.
Relaxed Eddy Accumulation (REA)

CSAT3 3-D Sonic at 10 m height

Open-sea sector: $80^\circ < WD < 160^\circ$

Coastal sector: $160^\circ < WD < 220^\circ$

Hg0 flux
CO$_2$ flux
Sensible heat flux
Water vapour flux
Wind vector
Results: Dissolved gaseous Hg^0 and modeled Hg^0 flux

- Dissolved gaseous Hg
- Solar radiation

Hg^0 flux and Hg^0 aq supersaturation

blue: open sea conditions for wind direction 80° - 160°
red: coastal conditions for wind direction 160° - 220°
Results:

1) Hg0 flux derived from the model and measurements (mean; 10th and 90th percentile):

- Gas exchange model: 0.6 (0.1 – 1.3) ng m$^{-2}$ h$^{-1}$
- Aerodynamic gradient: 0.5 (-3.8 – 5.6) ng m$^{-2}$ h$^{-1}$ (coastal sector)
- Relaxed eddy accumulation: 0.6 (-45 - 40) ng m$^{-2}$ h$^{-1}$ (coastal sector)

2) Hg0 emission from open sea sector (mean = 6.3 ng m$^{-2}$ h$^{-1}$) larger than from coastal sector (mean = 0.6 ng m$^{-2}$ h$^{-1}$).

3) Micrometeorological measurements indicated a stronger wind speed dependence of the Hg0 transfer velocity compared to the Standard Model (Nightingale et al., 2000) which appears to coincide with whitecap formation in the open sea flux footprint (wind speed > 5 m s$^{-1}$).

References:
