Geochemistry of Carbon Cycles on Rocky Exoplanets

A Lithology-based Silicate Weathering Framework

Kaustubh Hakim¹, Dan J. Bower¹, Meng Tian¹, Russell Deitrick¹, Pierre Auclair-Desrotour¹, Daniel Kitzmann¹, Caroline Dorn², Klaus Mezger³, Kevin Heng¹

¹ University of Bern, Center for Space and Habitability, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
 ² University of Zürich, Institute for Computational Science, Winterthurerstrasse 190, 8057 Zürich, Switzerland
 ³ University of Bern, Institute of Geology, Baltzerstrasse 1+3, 3012 Bern, Switzerland

WHY?

- The long-term carbon cycle (carbonate-silicate cycle) provides the essential negative feedback in maintaining temperate climates on Earth ^{[1]*}
- Silicate rocks on exoplanets are likely to be diverse than present-day continents
- Previous studies model the sensitivity of weathering rates on the partial pressure of carbon dioxide P_{CO_2} using reaction rate coefficients based on chemical kinetics Weathering rate $\propto P^{\beta}$ [1]
 - Weathering rate $\propto P_{CO_2}^{\beta}$ ^[1]
- Example weathering reaction: $CaSiO_{3(s)} + 2 CO_{2(aq)} + H_2O \leftrightarrow Ca^{2+} + 2 HCO_3^{-} + SiO_{2(aq)}$
- Equilibrium chemistry also

WHAT?

allows determining β ^[2]

KEY FEATURES

- Estimates of weathering from first principles of chemistry
- Applicable to both seafloor and continental silicate weathering

HOW?

• We track the total dissolved inorganic carbon at chemical

Illustration credit: Jenny Leibundgut

HIGHLIGHTS

- The sensitivity (β) of the weathering feedback to P_{CO2} is not
 constant as assumed
 by previous studies
- It is a strong function of lithology and P_{CO_2}
- Our framework is based on geochemical reactions and extendable to nonsilicate weathering and atmospheres denser or more dilute

equilibrium (DIC_{eq}) DIC_{eq} = $[CO_{2(aq)}] + [CO_3^{2-}] + [HCO_3^{-}]$

 \searrow

than that of Earth

References

[1] Walker, Hays & Kasting (1981), J. Geophys. Res., 86, 9776
[2] Winnick & Maher (2018) EPSL 485, 111-120
*Other references are omitted for clarity of this presentation

@exokaustubh

kaustubh.hakim@csh.unibe.ch

http://www.exokaustubh.com

Established by the European Commission

+ EXOCLIMES GROUP

