Hail Climatology for the Netherlands (and impact on solar panels)

Hans de Moel, Lucas Wouters, Bram van ‘t Veen, Maaike Boon, Demi van Putten, Elco Koks, Thirza Teule, and others.
Background

- Severe Hailstorms are in the Netherlands one (of not the) most damaging natural hazard
- Most damaging event was due to hail
- 6 events in the top 20 associated with hail

...but there is actually little know about hail probabilities and geographic distribution
Objective

Develop a hail climatology for the Netherlands

- Derive return periods for hail events with certain hail stone sizes
- Derive spatial differences in hail occurrence within the Netherlands

Omroep Brabant
Schadeoplossing.nl
How

Combine multiple sources

- Radar data from KNMI
- European Severe Weather Database
- Weerspiegel Magazine (back to 1975)
Return Periods of Hailstone Sizes

- Total of ~650 observations of hail with hailstone sizes over period 1975-2019

Table 1. The total amount of observations included in the observed-hail dataset from Weerspiegel-magazine and the ESWD.

<table>
<thead>
<tr>
<th>Source</th>
<th>Total observations</th>
<th># of hail sizes</th>
<th># of hail sizes ≥ 2 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weerspiegel</td>
<td>7,393</td>
<td>503</td>
<td>173</td>
</tr>
<tr>
<td>ESWD</td>
<td>166</td>
<td>150</td>
<td>148</td>
</tr>
</tbody>
</table>

Seiersberg, Steiermark, Austria (47°00'N, 15°30'E) 30-06-2016 (Thursday) 19:40 UTC (+/- 6 min.)

- Based on information from: an eye-witness report, a report on a website, photo or video of the event
- Maximum hail diameter: 2 cm
- Event duration at place of observation: 30 minutes
- Seiersberg, Steiermark, Austria

Hitzebod, Steiermark, Austria (47°30'N, 15°30'E) 30-06-2016 (Thursday) 13:33 UTC

- Based on information from: an eye-witness report
- Maximum hail diameter: 2.5 cm
- Event duration at place of observation: 30 minutes

Klobočky, South Moravian Region, Czech Republic (49°13'N, 17°02'E) 30-06-2016 (Thursday) 18:50 UTC (+/- 15 min.)

- Based on information from: a report received by e-mail, an eye-witness report, photo or video of the event
- Maximum hail diameter: 3 cm

Weerspiegel

ESWD
Return Periods of Hailstone Sizes

Probability of certain hail sizes for whole of the Netherlands

- 1/10 years return period is >7cm
Return Periods of Hailstone Sizes

South has highest probability, North the lowest

Return periods of max. hail sizes (GEV) for NUTS regions

- Nuts3 (West)
- Nuts4 (Zuid)
- Nuts2 (Oost)
- Nuts1 (Noord)
Spatial Distribution

- Doppler radar in two locations (reflection)
- HiRLAM NWP model (for temperature in atmosphere)
- Maximum Estimated Hailstone Size (MESH) derived using method of Witt et al. (1998)
- Period 2008-2019
- 1 km2 grid
Spatial Distribution

- Overall, 328 hail days selected
Spatial Distribution

- South-eastern provinces have seen higher hailstone sizes as opposed to the North of the Netherlands
 - In line with the return periods found earlier

Days with size >2 cm

Days with size >1 cm

Maximum MESH (cm) over the period 2008-2019 averaged per province
Spatial Distribution

Annual Hail Risk
- Using 50km radius due to limited length of time series

- Coastal regions clearly lower probability
- Probability increases towards the south-east
 - Again in line with return periods
Impact on Solar Panels

Damage starting at 2-3 cm hailstone size
> Visible damage dominating from 4cm

- Larger angle indicates somewhat less damage
- Orientation is very important
 > Orientation away from direction of the storm (SW) significantly reduces damage

Angle of solar panel

<table>
<thead>
<tr>
<th></th>
<th>Average damage / total SP (%)</th>
<th>Average mean hail size (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>18.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Pitched</td>
<td>12.6</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Orientation of solar panel

<table>
<thead>
<tr>
<th></th>
<th>Average damage / total SP (%)</th>
<th>Average mean hail size (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>17.0</td>
<td>4.1</td>
</tr>
<tr>
<td>SE</td>
<td>8.4</td>
<td>4.1</td>
</tr>
<tr>
<td>SW</td>
<td>13.6</td>
<td>3.7</td>
</tr>
<tr>
<td>W</td>
<td>15.7</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Concluding Remarks

- First hail climatology for the Netherlands created
- Return periods determined for various hailstone sizes
- Clear spatial pattern of hail occurrence
- Damage to solar panels linked to hailstone size, orientation and (to lesser degree) angle of solar panels