

Mechanisms controlling explosive-effusive transition of Teide-Pico Viejo complex dome eruptions

O. Dorado^a, J. Andújar^b, J. Martí^a, A. Geyer^a

^a Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, Group of Volcanology, SIMGEO (UB-CSIC), Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain. ^b ISTO, CNRS-Université d'Orléans-BRGM, 1^a rue de la Férollerie, Orléans 45071, France.

WCSIC

ICTJA

The Upper Group of the Central Volcanic Complex comprise the products of 3 volcanic cycles that end with a caldera collapse. Teide-Pico Viejo Complex

Tenerife island vulcanism is **bimodal**: basaltic magmas (high recurrence and low magnitude), and phonolitic (low recurrence and high magnitud). The later is only found in T-PV complex, in central and

METHODOLOGY

- **Petrographic** characterization of samples from the **effusive** (lava flows) and the **explosive** (pumice) phases of Pico Cabras dome eruption, using both petrographic and scanning electron microscopes.
- **Geochemical** analysis using an electron microprobe (major elements) and micro-X-ray fluorescence (for Br quantification).
- **Pre-eruptive parameters**: geothermobarometer [2] and geohygrometer [3]. These use the chemical 3) composition of minerals (clinopyroxene and feldspar, respectively) and the magma in equilibrium.
- 4) Comparison with **experimental petrology** data: [4-6].

RESULTS: GEOCHEMISTRY

Feldspar

Feldspar classification diagram [7]

Continuous evolution from oligoclase (less evolved magmas) to sanidine compositions (more evolved magmas).

Albite

Oligoclase

Andesine

Anorthoclase

DISCUSSION AND CONCLUSIONS

P-T: low accuracy due to the difficulty obtaining the exact composition of the magma in equilibrium.

RESULTS: PRE-ERUPTIVE PARAMETERS (P, T H_2O)

- P-T: significant contrast in temperature results.
- H₂O: inverse relationship between dissolved water content and %An in feldspar. Some analysis do not pass the equilibrium test based in the K_D .
 - Effusive phase: average of 3.4 wt% H_2O .
 - Explosive phase: average of 5.4 wt% H_2O .
- High H₂O content calculations (>5.5 wt%) are **above** water-saturation limit in phonolitic magmas [10] \rightarrow Is this geohygrometer poorly calibrated for phonolitic magmas?

P-T diagram with data calculated using the geothermobarometer.

Comparison with the experimental mineral

assemblage obtained by experimental petrology.

Model: magma chamber at 1kbar, chemical and thermally zoned. Zoning in minerals indicate selfmixing processes. Ca-rich rims in feldspars suggest underplating and injection of a mafic magma short time prior to eruption. This injection probably triggered the eruption.

1st phase: Explosive (pumices). Related to the upper cupola of the chamber with less temperature and higher volatile content. It was triggered by an increase in temperature and energy after a mafic injection.

> Collapse of the eruptive column because of loss and energy formation of a PDC into the Icod Valley.

2nd phase: Effusive (lava flow). Related to the magma stored in the main body of the magma chamber.

Schematic model of Pico Cabras eruption's magma chamber. Pre-eruptive conditions within the magma chamber calculated in this work have been indicated. Scheme not to scale.

I would like to thank my tutors Joan Andújar, Joan Martí and Adelina Geyer for their helpfull advices in the realization of this work. Also the ISTO-CNRS in Orleans, for giving me the opportunity of working there and provide me with all the analytical resources, and specially to Bruno Scaillet and María Jiménez for their advices. Finally, thank to the CSIC for my JAE Intro 2018 fellowship (JAEINT 18 00808).

From CI and Br measured in the explosive phase and the distribution coefficient between magma and fluid phase we estimate 244.6 Tm of Cl and 9.9 Tm of Br released to the atmosphere in this eruption.

CONCLUSIONS

- Pico Cabras eruption: magma chamber at 1 ± 0.5 kbar chemical and thermally zoned.
- The pre-eruptive parameters that controls the explosive-effusive transition are the temperature and the volatile content.
- The release of high amounts of CI and especially, Br, may lead to a local destruction of the stratospheric ozone layer.
- Phonolitic dome eruptions in Tenerife should be taken into account for improving the hazard assessment of the island, with special focus on Icod valley.

BIBLIOGRAPHY

- Martí et al. (2011). Journal of Volcanology and Geothermal Research, 178(3), 529-542.
- Masotta et al. (2013). Contributions to Mineralogy and Petrology, 166(6), 1545–1561.
- Mollo et al. (2015). Chemical Geology, 392, 1-8.
- Andujar et al. (2008). Chemical Geology, 257(3-4), 173-191.
- Andujar et al. (2013). Journal of Volcanology and Geothermal Research, 260, 62-79.
- Andujar y Scaillet (2012). Journal of Petrology, 53(9), 1777-1806.
- Deer et al. (1972). Journal of Geophysical Research: Atmospheres, 104(D19), 23871-23880.
- Morimoto (1988). *Mineralogy and Petrology*, 39(1), 55-76.
- Le Bas et al. (1986). Journal of Petrology, 27(3), 745–750.
- 10. Schmidt y Behrens (2008). Chemical Geology, 256(3-4), 259-268

EGU2020: Sharing Geoscience Online