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What are Double Seismic Zones?

Tsuji et al., 2008: 
Honshu, Japan

Sippl et al., 2018: 
Northern Chile

Double Seismic Zones

Arrangements of two parallel planes of earthquake hypocenters along slab dip

Observed at intermediate depths (50-300 km) in many subduction zones

Spacing between two planes is variable (usually 15-35 km) and apparently
temperature-dependent (colder slab → larger spacing)
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How are they created?

Cai et al., 2018 (Marianas)

Ferrand et al., 2017

Oceanic plates get hydrated at MORs, fracture
zones, hotspot tracks and (most importantly)
at the outer rise; Figure: reduced S-wavespeeds
show plate hydration down to ca. 25 km at
Marianas outer rise

Dehydration of hydrous mineral phases at
elevated p-T conditions is responsible for
intermediate-depth earthquakes

Physical mechanism is unclear; candidates
include dehydration embrittlement, thermal
runaway, dehydration-driven stress transfer
(Figure)

Lower plane seismicity likely due to antigorite
dehydration (in mantle lithosphere); upper
plane may be lawsonite or brucite dehydration
(oceanic crust or uppermost mantle)
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Stress field observations

Gamage et al., 2009 Faccenda et al., 2012

DSZ and plate unbending

Observations: most DSZs (e.g. left image) show downdip compressive earthquakes in
upper and downdip extensive earthquakes in lower plane

This is opposite to the bending signature in the outer rise region and hints at plate
unbending

Some models link DSZ occurrence to plate unbending; e.g. Faccenda et al. (2012)
propose that plate unbending could be responsible for deep hydration of the slab
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Comparing slab geometry to focal mechanisms

unbending bending

Earthquake mechanisms (from Sippl et al., 2019): green = downdip extensive; red = downdip
compressive
Observation: dominance of downdip extension everywhere except in upper plane under plate
interface
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Comparing slab geometry to focal mechanisms

unbending bending

Colored line: slab curvature determined from slab surface model of Sippl et al. (2018)

Bending and unbending are derived from downdip gradient of plate surface curvature; assumption:
geometrical steady state (= slab geometry does not change with time)
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Meaning?

Sandiford et al., 2019

N Chile DSZ mechanisms do not show unbending signature (other examples for this in
literature: New Zealand, Ryukyu, Central Chile)

Theoretical stress field: sign change should occur when slab geometry changes from
bending to unbending or vice versa (Figure)

Observations in N Chile do not show this (e.g. lower plane is downdip extensive everywhere)

Possible reasons: Ongoing slab geometry change; influence of volume reduction in
dehydration reactions,???
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Additional player: Transition zone processes

Isacks and Molnar, 1971

Stress transfer from mantle transition zone to shallower slab is another possible influence
Slabs that are deflected at or impinging onto 660 tend to be compressive, if they have
penetrated it or not reached it yet more extensive
Nazca slab in N Chile apparently penetrates through 660 and flattens in the lower mantle
Single case (N Chile) is maybe insufficient to disentangle the relationships between DSZ
occurrence, intraslab stress field, slab geometry and transition zone processes; global study
is needed (Work in progress!!)
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DSZ locations (blue - from local seismic data; green - from teleseismic data)
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Literature-derived datasets

DSZ locations (previous page), with parameters like depth extent, plane separation, etc.,
are harvested from literature

Information on focal mechanisms for upper/lower plane and slab structure in the transition
zone (next page), is likewise compiled

Goal: global correlation of DSZ occurrence and stress fields with slab shape-derived
bending or unbending areas

DSZ interplane separations according to Brudzinski et al. (2007)
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Slabs in the transition zone

Goes et al., 2017
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Slab geometries from slab2 grids

Slab surface curvature from slab2

a slab2 (Hayes et al., 2018): Slab surface grids with 0.05◦ lateral resolution

b Approach: profiles every 50 km taken perpendicular to the 20 km isodepth contour; compute
curvature as (smoothed) downdip gradient of slab dip (similar to Buffet and Heuret, 2011)

c Analyze resulting profiles in depth bins; positive corresponds to upward curvature; depth ranges
of unbending (green) and bending (red) are marked
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First (very) preliminary global results

Shown: median slab curvature vs.
depth for 8 major slabs

Big variety of curvature evolution
between different slabs
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First (very) preliminary global results

Shown: median slab curvature vs.
depth for 8 major slabs

Big variety of curvature evolution
between different slabs

Green disks: regions of slab
unbending (downward curvature
decrease)
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First (very) preliminary global results

Shown: median slab curvature vs.
depth for 8 major slabs

Big variety of curvature evolution
between different slabs

Green disks: regions of slab
unbending (downward curvature
decrease)

Bars: approximate depth extent
of DSZ seismicity in these
subduction zones
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Conclusions:

Variety of slab shapes is larger than expected; often no simple progression from bending at
the trench to unbending deeper down, but more complex

Depth extent of DSZ seismicity fits to unbending depths only at some subduction zones;
this has to be investigated in more detail though

Next steps:

1 Focused analysis of areas with/without DSZ (not just medians for entire slabs)

2 Bring DSZ earthquake focal mechanisms into the game (do they correspond to
bending/unbending stress fields expected from slab geometry?

3 Formal correlation between (un)bending stresses and DSZ occurrence

4 Investigate importance of transition zone processes (modeling?)
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