The Global Environmental Monitoring System (GEMS) Constellation of Passive Microwave Satellites

Richard Delf
Remote Sensing Scientist
Orbital Micro Systems & The University of Edinburgh, UK
richard.delf@orbitalmicro.com

Albin J. Gasiewski 2,3
Michael A. Hurowitz2,3
Brian T. Sanders3
David W. Gallaher3
Robert Belter3
David Kraft2,3
Roger Carter2,3
Geoffrey Sasaki2,3
Lavanya Periasamy4
Kun Zhang5
Greg Porter3
Richard McAllister3,6
Frank McAllister3
William L. Hosack3

1) University of Edinburgh, Edinburgh, Scotland, UK
2) Center for Environmental Technology, Dept of ECEE, University of Colorado, Boulder, CO, USA
3) Orbital Micro Systems, Inc., Boulder, CO, USA
4) NASA Jet Propulsion Laboratory, Pasadena, CA, USA
5) Global Science and Technology, Greenbelt, MD, USA
6) Montana State University, Numerical Intelligent Systems Laboratory, Bozeman, MT, USA
Observation System Impact on Forecast Error

← Percentage contribution of various observation types to the total forecast error reduction:

- Microwave sounders provide the largest forecast error (FE) reductions relative to all other systems.

- Key fundamental reasons include their relative insensitivity (WRT IR) to clouds in sensing meso-γ scale T,Q thermodynamic variables.

- Primary challenges to deployment include spatial resolution, calibration, and scale-up costs for high temporal resolution sampling.

GEMS MiniRad-01 Radiometer:

- First commercial passive microwave mission
- Cross-track scanned, 410 km release orbit
- 8 channels at 118.7503 GHz O₂ resonance
- 16 km 3dB nadir spatial resolution
- Nyquist sampling across and along track
- 3U CubeSat, 1.5U payload, 4W, 14kB/s
- ~15% achieved average duty cycle
- Total mission cost <$2M

Launch April 2019 on ISS resupply mission, commissioning complete 10/2019, ~7 months of successful acquisition to date. L1c pre-launch (day 1) calibration algorithm used in initial data release.
GEMS-01 Ch 8 (±3.7-6.3 GHz) overlays on FY3C MWHS-2 Ch 9 (±4-6 GHz) with ~15-min overpass coincidence

- MiniRad-01 spatial resolution and ΔT_{rms} prelaunch goals (as engineered) achieved to within ~1.2x
- GEMS-01 bus-limited georegistration goal of ~2 beam widths maximum error
- MiniRad-01 radiometer exhibited zero faults or sporadic samples during 8+ months on-orbit
GEMS-01 IOD Weighting Functions & Convolutional Bandwidths:

Designed, measured (by IF sweep), and idealized boxcar weighting function closely match.

Negligible passband variation with temperature observed during testing.

CRTM effective-passband coefficient generation and on-orbit ΔT_{rms} estimation in progress.

<table>
<thead>
<tr>
<th>Ch #</th>
<th>B_C (MHz)</th>
<th>ΔT_{rms} (K) (theoretical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>265.72</td>
<td>2.22</td>
</tr>
<tr>
<td>2</td>
<td>204.22</td>
<td>2.36</td>
</tr>
<tr>
<td>3</td>
<td>674.29</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>563.00</td>
<td>1.28</td>
</tr>
<tr>
<td>5</td>
<td>665.85</td>
<td>1.21</td>
</tr>
<tr>
<td>6</td>
<td>676.14</td>
<td>1.20</td>
</tr>
<tr>
<td>7</td>
<td>2031.0</td>
<td>0.74</td>
</tr>
<tr>
<td>8</td>
<td>2708.7</td>
<td>0.58</td>
</tr>
</tbody>
</table>

$B_C = \left(\frac{\int_{0}^{+\infty} T_{SYS}(f)G_{SYS}(f)|H_{BPF}(f)|^2 df}{\int_{0}^{+\infty} T_{SYS}^2(f)G_{SYS}^2(f)|H_{BPF}(f)|^4 df} \right)^2$

Integration time = 4.096 ms

L. Periasamy, Ph.D. Thesis, University of Colorado at Boulder, 2019
GEMS-01 IOD / FY3C Nadir Radiance Validation

ΔT_b

mean:
7.5 +/- 7.02 K

mean:
-2.52 +/- 4.46 K

mean:
-4.9 K +/- 10.1 K

mean:
-5.7 +/- 10.5 K

- GEMS-01 L1c pre-launch (day 1, v1.0) calibration algorithm
- Matchup latitude range <55°
- Nadir 15km / 5 min matchups
- No passband response corrections
 - High stability over 3 months
 - Channel response corrections underway
 - Post-launch recalibration underway (v1.1)
18 total soundings from NOAA Integrated Global Radiosonde Archive (IGRA) Version 2, Zhengzhou sonde CHM00057083 @ (34.7167,113.6500)

Clear-air, 15 minute/0.5° coincidence

MRT (Liebe MPM87) forward RT model calculations, land background with 5% reflectivity, multiple view angles 29-48°

<Δ> ~ 8 to -2 K, roughly consistent with FY3C comparisons

Biases being considered along with FY3C matchups for post-launch v1.1 recalibration
OMS GEMS Constellation: 48x Revisit Times

Minimum 2 year average on-orbit lifetime (6U)

Assumed 2-year lifetime at 450-500 km altitude is conservative.

~10-25 minute average revisit time achievable using a large “random orbit” 48-satellite GEMS constellation array.
Summary

• The GEMS-01 IOD mission is achieving its planned engineering and observational goals

 ➢ Nyquist sampling – highest resolution microwave temperature sounder to date!
 ➢ Highly stable radiometric performance, validation with pre-launch L1c calibration algorithm validation, post-launch re-calibration underway
 ➢ Georegistration and spatial resolution within engineered design specifications
 ➢ Compelling cost model feeding into future GEMS instrument designs and risk reduction
 ➢ Improvements include additional bands and channels, improved calibration accuracy, spatial resolution, and bus navigation and communications capabilities.