Faunal and environmental changes through the Cretaceous-Paleogene boundary (K-Pg) linked with Deccan Volcanism: evidence from the Neo-Tethys, Turkey

A. Uygar Karabeyoğlu, Sevinç Özkan Altıner, Demir Altıner, Thierry Adatte
This presentation focuses on the work carried out in the Haymana Basin.
Field pictures showing sedimentation style of Haymana (a), and Mudurnu-Göynük Basins (b,c,d)
Outline of the work on Haymana Basin

- Quantitative analysis: 63-150 µm & >150 µm
- Relative Abundances and Species Richness
- Paleobathymetric Analysis
- Events across the K-Pg boundary
Quantitative analysis
Paleobathymetric Calculation

Planktic/Benthic Ratio

\[
\%P = \left(\frac{P}{P + B} \right) \times 100
\]

Van der Zwaan et al. (1990)

\[
Depth(D) = e^{3.58718 + (0.03534 \times \%P)}
\]

Ave. Depth 381m

De Rijk et al. (1999)

\[
Depth(D) = e^{(\%P + 81.9)/24}
\]

Ave. Depth 490m
A) Paleobathymetric variations (depth in meters) through Maastrichtian are based on formulas of: Van der Zwaan et al. (1990) (upper graph), De Rijk et al. (1999) (lower graph). White bars represent standard errors. Paleobathymetric calculations revealed 400 m paleodepth for our study area corresponding upper bathyal zone.

B) Paleodepth of the study area in the Haymana Basin and its comparison with worldwide K-Pg boundary sections. Image modified after MacLeod and Keller (1994) and Molina et al. (2006 and references therein).
Quantitative Analysis

• 63-150 µm & >150 µm size fractions

• Relative abundance and species richness changes across the K-Pg boundary
Quantitative Analysis

Population at >150 μm fraction

- 394 individual count per sample
- Average 40 species richness
Population at 63-150 µm fraction

- Average 380 individual per sample
- Average 15 species richness
Relative Abundance Analysis

r-Strategists (Generalists)

- L. dentata
- H. globulosa
- G. multispinus
- G. cretacea

- Small, unornamented, tolerant to nutrient, temperature, acidity fluctuations in environment
Some K-Strategists (Specialists)

- Large, ornamented, diversified but occupy certain niches and intolerant to environmental fluctuations!
Relative abundance of population >150 µm

K-Pg

r-Strategists (Generalists)

K-Strategists (Specialists)
Population above 63-150 µm fraction

Heterohelicids General

H. globulosa

G. cretacea

Quantitative Analysis

Guembelitria cretacea Heterohelix globulosa Heterohelix spp.
Quantitative Analysis

- 50% drop in the species richness before the KPB
- Environmental stress prior to KPB!

Species Richness

9 out of 28 species survived!
Maastrichtian CF1-CF2

Pardo & Keller 2008
Nature of the K-Pg boundary layer

- 2-3 mm thick reddish oxidized layer
- Sharp extinction horizon!
- >63 µm Almost no planktonic foraminifera (only some heterohelicids, guembelitrids, globigerinellids & hedbergellids) & very rare benthics
Findings across the K-Pg boundary
Findings across the K-Pg boundary

- Thoracosphaera acme
- Black and Brown spherules
 Only found within the 2-3mm thick reddish layer!
- Amorphous Grains
 Only found within the 2-3mm thick reddish layer!
- Abrupt increase in pellets
- Euhedral Grains
 Found -2cm & at the K-Pg boundary layer.
 Not above!
Thoracosphaera spp. increase

- Calcareous dinoflagellate-Phytoplankton
- Environmental Stress Marker (Lamolda et al., 2005)

Findings across the K-Pg boundary

Hildebrand-Habel et al., 1999
Our Findings in Haymana Basin

Hildebrand-Habel et al. 1999

Bramlette & Martini 1964
Thoracosphaera opercula
Findings across the K-Pg boundary

Black and Brown spherules
Series 1 - Brownish, amber and yellow ones

Some specimens are pliable!
Series 1 - Black ones

More smooth surface!
Black and Brown Spherules

<table>
<thead>
<tr>
<th>Sample No:</th>
<th>Series 1-a</th>
<th>Series 1-b</th>
<th>Series 1-d</th>
<th>Series 1-e</th>
<th>Series 1-f</th>
<th>Series 1-h</th>
<th>Series 1-i</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>15.37</td>
<td>12.55</td>
<td>9.55</td>
<td>16.63</td>
<td>3.38</td>
<td>3.86</td>
<td>3.46</td>
<td>9.3</td>
</tr>
<tr>
<td>CaO</td>
<td>56.08</td>
<td>57.03</td>
<td>38.72</td>
<td>47.97</td>
<td>80.49</td>
<td>80</td>
<td>74.42</td>
<td>62.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>n.d.</td>
<td>3.13</td>
<td>10.91</td>
<td>4.42</td>
<td>n.d.</td>
<td>n.d.</td>
<td>2.44</td>
<td>5.2</td>
</tr>
<tr>
<td>MgO</td>
<td>12.94</td>
<td>13.53</td>
<td>15.92</td>
<td>16</td>
<td>9.88</td>
<td>8.9</td>
<td>15.47</td>
<td>13.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>6.2</td>
<td>6.9</td>
<td>4.76</td>
<td>4.91</td>
<td>1.88</td>
<td>3</td>
<td>1.85</td>
<td>4.2</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>9.4</td>
<td>6.86</td>
<td>6.14</td>
<td>10.07</td>
<td>4.38</td>
<td>4.24</td>
<td>2.37</td>
<td>6.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No:</th>
<th>Series 2-a</th>
<th>Series 2-b</th>
<th>Series 2-d</th>
<th>Series 2-e</th>
<th>Series 2-f</th>
<th>Series 2-g</th>
<th>Series 2-h</th>
<th>Series 2-i</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>9.31</td>
<td>20.1</td>
<td>n.d.</td>
<td>6.58</td>
<td>n.d.</td>
<td>11.11</td>
<td>n.d.</td>
<td>n.d.</td>
<td>11.8</td>
</tr>
<tr>
<td>CaO</td>
<td>73.01</td>
<td>46.98</td>
<td>73.01</td>
<td>76.78</td>
<td>81.92</td>
<td>66.39</td>
<td>91.01</td>
<td>72.7</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.65</td>
<td>n.d.</td>
<td>2.82</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>3.7</td>
</tr>
<tr>
<td>MgO</td>
<td>8.43</td>
<td>10.87</td>
<td>8.93</td>
<td>12.75</td>
<td>10.99</td>
<td>6.6</td>
<td>7.1</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.59</td>
<td>9.4</td>
<td>4.14</td>
<td>3.89</td>
<td>3.98</td>
<td>4.61</td>
<td>1.89</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>n.d.</td>
<td>12.44</td>
<td>7.79</td>
<td>n.d.</td>
<td>n.d.</td>
<td>11.29</td>
<td>n.d.</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Cl₂O</td>
<td>n.d.</td>
<td>n.d.</td>
<td>3.31</td>
<td>n.d.</td>
<td>3.11</td>
<td>n.d.</td>
<td>n.d.</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>
Findings across the K-Pg boundary

Pellet Surge

A) View of the fecal pellets in reflected light. Samples from E+2, 2 cm above the K-Pg boundary, recovered from >150 mm sieve, X60 magnification

B) Scanning electron microscope (SEM) views of the fecal pellets peak at 2 cm above the K-Pg boundary
Number of fecal pellets rapidly increases right after the K-Pg boundary in the Danian P0 Zone. Notice the abrupt increase right after the K-Pg boundary. Another but much minor increase was detected in the lower Pα Zone.
No solid interpretation is pronounced at this stage about their genesis. Yet, being present only in the 2-3 mm thick layer corresponding the K-Pg boundary may infer the impact origin.

A) Brown grains were found in washed residues of the 2-3 mm thick reddish layer corresponding the K-Pg boundary. Displayed grains were recovered from >150 mm sieve. Left view x40 magnification, right view x60 magnification.

B) SEM images of the brown grains

<table>
<thead>
<tr>
<th>Sample No</th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>15</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>44,65</td>
<td>42,91</td>
<td>36,35</td>
<td>44,92</td>
<td>42,2</td>
</tr>
<tr>
<td>CaO</td>
<td>1,87</td>
<td>2,13</td>
<td>1,92</td>
<td>1,92</td>
<td>2,0</td>
</tr>
<tr>
<td>K₂O</td>
<td>1,76</td>
<td>0,77</td>
<td>0,29</td>
<td>1,17</td>
<td>1,0</td>
</tr>
<tr>
<td>MgO</td>
<td>8,19</td>
<td>8,95</td>
<td>9,21</td>
<td>8,53</td>
<td>8,7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15,32</td>
<td>16,19</td>
<td>14,29</td>
<td>17,27</td>
<td>15,8</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>28,21</td>
<td>29,05</td>
<td>37,95</td>
<td>26,19</td>
<td>30,4</td>
</tr>
</tbody>
</table>
Euhedral Grains

Found -2cm & at the K-Pg boundary layer.
Not above!

A) Barite crystals were found only from 2 cm below and right at the K-Pg boundary level (2e3 mm thick reddish layer). View in reflected light. Sample E-2 from >150 mm screen, x100 magnification. B) SEM images of Barite grains.

The increase in the barite grains below and at the K-Pg boundary layer may be a record of paleoproduction enhancement across the K-Pg interval and/or increase in atmospheric sulphur oxides caused by the Chicxulub impact.

<table>
<thead>
<tr>
<th>Sample No:</th>
<th>19</th>
<th>20</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>74,5</td>
<td>61,03</td>
<td>67,8</td>
</tr>
<tr>
<td>S</td>
<td>19,85</td>
<td>34</td>
<td>26,9</td>
</tr>
<tr>
<td>Sr</td>
<td>5,65</td>
<td>4,97</td>
<td>5,3</td>
</tr>
</tbody>
</table>
CONCLUSION
Almost complete dominance of *r-Strategists*
Heterohelix ve *Guembelitria* domination

- *r-Strategists (Generalists) > K-Strategists (Specialists)*
- *Heterohelix* domination
- More species richness (Average 40 species)
Events *before* the K-Pg boundary

- **Dominance of *Heterohelix* species**
- **Guembelitria blooms**
- **Decreasing species richness**

Interpretation:

- Expanded Oxygen Minimum Zone (OMZ)
- High terrigenous influx (increased weathering) directing augmented nutrient levels/ *eutrophication*. This might have caused by Deccan-induced climate change and enhanced weathering.
- Environmental stress due to Deccan Volcanism
Events at & after the K-Pg boundary

68% of planktonic foraminifera underwent extinction at the K-Pg boundary

Guembelitria cretacea bloom after the KPB

Thoracosphaera acme

Abrupt increase in echinoid pellets

Environmental crisis after the KPB
Thank you...