Glaciological controls on the spatial variability of supraglacial debris thickness in High Mountain Asia

Karla Boxall¹, Ian Willis¹ and Michael McCarthy²

¹Scott Polar Research Institute, University of Cambridge, UK
²Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Switzerland

1. Introduction

11% of glaciers in High Mountain Asia (HMA) are debris-covered (Steiner et al., 2018). Debris-covered glaciers respond differently to clean ice glaciers under the same climatic forcing (Nicholson and Benn, 2013). Beneath thin debris, ablation is enhanced, but beneath debris >2 cm thick, ablation is inhibited (Østrem, 1959). Thus, the spatial variability of supraglacial debris thickness is significant in controlling the response of debris-covered glaciers to climate change.

Figure 1: Surface temperature (°C) (x axis)/debris thickness (cm) (y axis) relationships for six glaciers (rational curve, linear, Mihalcea et al. (2008) relationship, Kraaijenbrink et al. (2017) relationship). Solid line = relationship with smallest median error.

2. Research Aims

1. Improve the mapping of debris thickness at both the glacier and the mountain range scale
2. Quantify the controls on the spatial distribution of supraglacial debris thickness

3. Methods

1. K-fold cross validation used to determine best empirical relationship between mean melt season surface temperature (derived from Landsat 8 thermal imagery) and in situ debris thickness (collected from literature) for:
 ○ Six individual glaciers (Figure 1)
 ○ The HMA region, by collating and normalising the data (Figure 2)
2. Principal Components Analysis (PCA) of glaciological characteristics (slope, aspect, curvature, elevation, velocity) for the six glaciers. PCs regressed with debris thickness (derived for each glacier using local scale relationships).

4. Results

1. Rational curve is the best relationship for Changri Nup and Baltoro; linear relationship is best for Ngozumpa, Hailuogou and Satopanth (Figure 1). Rational curve (equation below) is the best relationship for the larger HMA region (Figure 2).

 \[dt = 0.558 + (-0.0198T_s) \]

2. 1st Principal Components are dominated by the positive influence of velocity; 2nd Principal Components are dominated by the positive influence of aspect. Regressions show that debris thickness consistently has a negative relationship with PC1 (=debris thickness increases as velocity decreases), but either a positive or a negative relationship with PC2 (=debris thicker on E or W facing slopes, respectively).

5. Conclusions

- Use of a rational curve or a linear relationship improves estimations of spatial variability of supraglacial debris thickness, on both a glacier and mountain range scale, in comparison to relationships used in studies by Mihalcea et al. (2008) and Kraaijenbrink et al. (2017).
- Velocity and aspect statistically proven to be important controls on the spatial distribution of supraglacial debris thickness.
6. References

Personal communication with Alexandra Giese, Department of Earth Sciences, Dartmouth

Personal communication with Liu Qiao, Institute of Mountain Hazards, Chinese Academy of Sciences
