

Thoughts on limits and new approaches to reconstruct temperature from the isotopic composition of ice cores in low-accumulation regions

Thomas Laepple^{1,2}, Thomas Münch¹, Mathieu Casado¹, Maria Hörhold³, Johannes Freitag³, Martin Werner³, and Remi Dallmayr³

¹Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

²University of Bremen, MARUM – University Bremen, Germany

³Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

	Process	Time-scale (and why)	Spatial- scale	strength estimate /amplifying factors	Ways to overcome	research directions (limited personal view)
	temperature -> water isotopes in precipitation	GCM's suggest stronger relationship towards longer time-scales but slopes may depend on mean climate state	unclear, non- temperature effects likely spatially coherent	unclear	inherent limitation some gain by spatial averaging across large distances & temporal averaging use of non water isotope proxies	Continue to test isotope enabled GCM's across time-scales (spatial, seasonal, interannua). T vs. isotope frequency spectra in GCM's and obs.
	vapour exchange with surface snow	Unclear, likely fast	unclear, maybe linked to local topography	lower accumulation+	use of excess parameters	Study relation of excess parameters and local surface conditions-> simple testable models
	precipitation intermittency	white noise = averages out (aliasing of the seasonal cycle)	100-500km	seasonal cycle strength x intermittency	averaging across cores & time active noise correction using other seasonal parameters	precip vs. accum. obs. check/use covariance between water isotopes and impurities
	(local) stratigraphic noise & accumulation intermittency	blue noise = averages out quickly (Antarctica is flat)	1-10m	amplitude of topographic undulations / accumulation rate	averaging across cores & time active noise correction using other seasonal parameters	Strat. noise estimates across different sites (e.g. trenches) to inform a model for stratigraphic noise check/use covariance between water isotopes and impurities

Process	Time-scale (and why)	Spatial- scale	strength estimate /amplifying factors	Ways to overcome	research directions (limited personal view)
topographic noise	flow-speed x accumulation rate low frequency variations are possible = might not average out	scale of accumulation variations, linked to scale of bedrock variations	wind-speed+ topography+	choose sites with minimal flow speed and minimal spatial accumulation rate variations	spatial investigation of accumulation rate vs. topography vs. mean isotope variations to bracket the effect
firn and ice- diffusion	only affects fast time- scales fast can also mean millennia in the deep part of the Oldest Ice Core	local response function	diffusion length / layer thickness	high precision measurements + optimal deconvolution However, possible gain is limited to a narrow frequency range	Ice-diffusion in warm ice? Analysing deep parts of deep ice-cores