Thoughts on limits and new approaches to reconstruct temperature from the isotopic composition of ice cores in low-accumulation regions Thomas Laepple^{1,2}, Thomas Münch¹, Mathieu Casado¹, Maria Hörhold³, Johannes Freitag³, Martin Werner³, and Remi Dallmayr³ ¹Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany ²University of Bremen, MARUM – University Bremen, Germany ³Alfred-Wegener-Institut, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany | | Process | Time-scale (and why) | Spatial-
scale | strength
estimate
/amplifying
factors | Ways to overcome | research
directions
(limited personal
view) | |--|--|--|---|--|---|--| | | temperature -> water isotopes in precipitation | GCM's suggest stronger
relationship towards
longer time-scales but
slopes may depend on
mean climate state | unclear, non-
temperature
effects likely
spatially
coherent | unclear | inherent limitation
some gain by spatial
averaging across
large distances &
temporal averaging
use of non water
isotope proxies | Continue to test isotope enabled GCM's across time-scales (spatial, seasonal, interannua). T vs. isotope frequency spectra in GCM's and obs. | | | vapour
exchange
with surface
snow | Unclear, likely fast | unclear, maybe
linked to local
topography | lower
accumulation+ | use of excess parameters | Study relation of excess parameters and local surface conditions-> simple testable models | | | precipitation
intermittency | white noise = averages
out (aliasing of the
seasonal cycle) | 100-500km | seasonal cycle
strength x
intermittency | averaging across
cores & time
active noise
correction
using other seasonal
parameters | precip vs. accum. obs. check/use covariance between water isotopes and impurities | | | (local)
stratigraphic
noise &
accumulation
intermittency | blue noise = averages
out quickly
(Antarctica is flat) | 1-10m | amplitude of
topographic
undulations /
accumulation
rate | averaging across
cores & time
active noise
correction
using other seasonal
parameters | Strat. noise estimates across different sites (e.g. trenches) to inform a model for stratigraphic noise check/use covariance between water isotopes and impurities | | Process | Time-scale (and why) | Spatial-
scale | strength
estimate
/amplifying
factors | Ways to overcome | research
directions
(limited personal
view) | |----------------------------|--|---|--|---|---| | topographic
noise | flow-speed x accumulation rate low frequency variations are possible = might not average out | scale of accumulation variations, linked to scale of bedrock variations | wind-speed+
topography+ | choose sites with
minimal flow speed
and minimal spatial
accumulation rate
variations | spatial investigation of accumulation rate vs. topography vs. mean isotope variations to bracket the effect | | firn and ice-
diffusion | only affects fast time-
scales
fast can also
mean millennia in the
deep part of the Oldest
Ice Core | local response
function | diffusion length /
layer thickness | high precision
measurements +
optimal deconvolution
However, possible
gain is limited to a
narrow frequency
range | Ice-diffusion in warm ice? Analysing deep parts of deep ice-cores |