An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Pedro V. G. Batista, J. Patrick Laceby, Jessica Davies, Teotônio S. Carvalho, Diego Tassinari, Marx L. N. Silva, Nilton Curi, John N. Quinton
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Spatially distributed soil erosion and sediment delivery models can inform us about where, when, and with which magnitude erosion occurs.

These models also allow us to quantify how much sediment is delivered to water courses and where it comes from.
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

But how do we test these models? The common approach is to compare modelled and measured catchment sediment loads.

This approach does not allow us to understand if the models are correctly identifying the main sediment sources.

For instance: both models predict similar outlet transport rates. Which one deviates farther from reality?
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Sediment fingerprinting provides quantitative apportionments of sediment sources.

A comparison between soil erosion/sediment delivery models and fingerprinting source apportionments may be used to evaluate the capability of the models to identify the main sources in a catchment.

However, testing soil erosion models requires representing the uncertainties associated to:

- The system representation:
 Reality x Model

- Parameter estimation:

- Observational testing data:

Source: Patrick Laceby (personal communication)
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

The Generalised Likelihood Uncertainty Estimation (GLUE) (Beven & Binley, 1992) provides a framework for testing models, or model realizations, as hypotheses.

The basis of GLUE can be summarized in a few decision steps (Beven, 2009):

I. Decide on a rejection criteria for non-behavioral realizations (non-acceptable reproductions of the observational data).

II. Decide on which parameters are uncertain.

III. Decide on a prior distribution to characterize the uncertainty of the chosen parameters.

IV. Decide on a simulation method for generating model realizations.

And you, never commit any errors?

Often. But instead of conceiving only one, I imagine many, so I become the slave of none.

The Name of the Rose, Umberto Eco
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Objectives:

• To develop an approach to the evaluation of spatially-distributed soil erosion/sediment delivery models that incorporates sediment fingerprinting source apportionments while representing the uncertainties in models and observational forcing/testing data.

• More specifically:

 • To apply the RUSLE-based Sediment Delivery Distributed (SEDD) (Ferro & Porto, 2000) model within the GLUE methodology at a large catchment in Southeast Brazil.

 • To define limits of acceptability of model error based on the uncertainty of sediment load measurements.

 • To evaluate behavioral simulations against tributary-based fingerprinting source apportionments.
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Mortes River catchment:

- ~6600 km²
- Humid subtropical with dry winters and warm summers (Cwb)
- ~1500 mm yr⁻¹
- Acrisols (48%) and Cambisols (35%) are the main soil classes

Land use:
- Pasture: 66%
- Forest: 22%
- Cropland: 5%
- Eucalypt: 5%
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Outlet sediment loads – **forcing data:**

- Sediment concentration and water discharge measurements (2008 – 2012)

Sediment rating curve:

- Log-transformed data
- Ordinary least squares
- Posterior simulations of model coefficients: propagation of regression uncertainty into long-term sediment load estimates (analogous to SEDD outputs).
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Sediment fingerprinting – **testing data:**

Hierarchical tributary sampling design:
- 20 composite samples of lag deposits per tributary
- Sink nodes sampled during the dry and rainy season

Lab work:
- Sieving < 0.2 mm
- Sediment geochemistry: ICP OES

Element selection:
- Forward step-wise LDA

Un-mixing modelling:
- Monte Carlo simulation sampling from Multivariate-Normal distributions
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Soil erosion and sediment delivery modelling

RUSLE-based Sediment Delivery Distributed model (SEDD):

\[
SSY_i = \exp \left(-\beta \cdot \frac{1}{2} \right) \times (R \cdot K \cdot LS \cdot C \cdot P)
\]

- Model realizations generated by a **Monte Carlo** simulation (1000 iterations)

- Rejection criterion: **95% PI** of curve-estimated sediment loads (forcing data)

- **Evaluation** data: sediment fingerprinting source apportionments

- One-way sensitivity analysis: RUSLE factors
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Results – Sediment-rating curve

Long-term average area specific sediment yield (SSY):

- **95% PI** = 0.47 – 11.95 ton ha\(^{-1}\) yr\(^{-1}\)
- **Mean** = 3.45 ton ha\(^{-1}\) yr\(^{-1}\)
- **Median** = 2.52 ton ha\(^{-1}\) yr\(^{-1}\)

> 90 % of sediment transport during the rainy season
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Results – Sediment fingerprinting source apportionments

Increased contributions from Nodes 1 and 2 during the rainy season (median ~ 60%) in comparison to the dry season (median ~ 20%). As expected, the catchment is more connected during the rainy season, and upstream tributaries have higher relative contributions. During base-flow, sediments are mainly derived from proximal tributaries (e.g. PXE and TAB).
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Results – RUSLE uncertainty and sensitivity analysis

Median = 588%

Median = 29 ton ha\(^{-1}\) yr\(^{-1}\)

Median = 5 ton ha\(^{-1}\) yr\(^{-1}\)
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Results – SEDD model

234 behavioural model realizations

Highly uncertain grid-based model estimates

Median Absolute Error = 6 ton ha\(^{-1}\) yr\(^{-1}\)

Median SSY = 0.06 ton ha\(^{-1}\) yr\(^{-1}\)
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Results – evaluation against sediment fingerprinting source apportionments

SEDD results are far less uncertain when lumped into **relative sub-catchment contributions**.

Fingerprinting and SEDD source apportionments for Node 1 are contrasting. For nodes 2 and 3, most behavioural SEDD realizations are within the inter-quartile range of the fingerprinting apportionments (rainy season), and both results show a similar pattern.
Conclusions:

• We have demonstrated how sediment fingerprinting source apportionments can be used to evaluate soil erosion and sediment delivery models, while representing the uncertainty in both models and observational data.

• From a falsificationist perspective, the SEDD model could not be rejected, as multiple model realizations produced acceptable system representations. However, this was largely facilitated by the uncertainty in the forcing data and the model sensitivity to the empirical parameter β.

• Although grid-based SEDD results were highly uncertain, the evaluation against fingerprinting apportionments indicate the model might be useful for identifying main sediment sources at sub-catchment scale.

• Uncertainty in the RUSLE factors contributed significantly model variance. Uncertainty analysis should become a standard procedure for RUSLE model applications.

• We need better data in order to reject models, or model realizations, as hypotheses. This will require honest representations of the uncertainty in models and the observational data.
An uncertainty-based framework for incorporating sediment source fingerprinting into spatially-distributed soil erosion model testing

Thank you!

pedro.batista@unibas.ch