Conductive anomalies related to the Mérida Andes derived from the 3D inversion of a magnetotelluric profile

J. Cruces-Zabala1,2,3, O. Ritter1,3, U. Weckmann1,4, K. Tietze1,3 and M. Schmitz2

1. Helmholtz Centre Potsdam –German Research Centre for Geosciences GFZ, Potsdam, Germany. jcruces@gfz-potsdam.de
2. FUNVISIS Venezuelan Foundation for seismological Research, Caracas, Venezuela
3. Fachrichtung Geophysik, Freie Universität Berlin, Berlin, Germany
4. Institute of Earth and Environmental Science, University of Potsdam, Potsdam, Germany
The Mérida Andes (MA) are located in western Venezuela, they form a 100 km wide mountain chain extending from the Venezuelan border with Colombia to the Caribbean coast.

- Black line indicates the position of our profile
- Red ellipse marks the location of the Mérida Andes
The MA are in one of the most sismogenically active zones in Venezuela. Most earthquakes' hypocenters are crustal. Yet, deep structures under the MA have not been imaged by geophysical methods, and the tectonic processes controlling the geodynamics are still in dispute.
The geodynamics in western Venezuela are dominated by the interaction of the different blocks controlled by the eastward movement of the Caribbean plate and the escape of the North Andean Block (NAB) and the South American plate.

Black lines represent structure boundaries after Perez et al. (2018)
The interaction of these major plates fosters the partition of the NAB into several sub-blocks. Among them, the Maracaibo Block (red triangle) has played a key role in the uplift of the MA.

These tectonic processes caused the formation of several strike-slip deep-reaching fault systems.
The different fault systems in the area resulted in the partition of the Maracaibo Block along the Valera and Boconó Fault systems, producing the Trujillo block, among others.

The tectonic escape of the Trujillo block may create the space for deep fluids, related to the subduction of the Caribbean plate, to rise to the upper crust and flow along the deep reaching faults of the MA.

- VF – Valera fault
- BF – Boconó fault
- BUF - Burbusay fault

Yellow lines indicate location of fault systems (after Audemard et al., 2000); Geology map edited from Hackley et al. (2006) and Urbani (2017)
The MA are the most important orogeny in western Venezuela. Uplift of the MA commenced in the Late Miocene and accelerated during the Plio-Quaternary, exposing crystalline and metamorphic rocks of Precambrian to Paleozoic age in the central part of the MA.
• Uplift of the MA, separated the Maracaibo (MB) and Barinas-Apure (BAB) basins, and subsequent erosion filled them with Neogene to Quaternary sediments.

• The MB is an asymmetric trough that contains up to 12 km of carbonates and shale of late Cretaceous to Eocene age (De Toni & Kellogg, 1993).

• The stratigraphic section of the BAB basin comprises as much as 5 km of Aptian through Pleistocene sediments (Callejón & von der Dick, 2002).
The Venezuelan MT dataset

- 72 MT stations along a 240 km-long profile
- 5 component MT data stations with 3 to 5 km spacing
- 3 days per site and sampling rates of 25 kHz (10 min/day) – 1250 Hz (10 min/2h) -50 Hz (continuous), using S.P.A.M. Mk IV instruments of the Geophysical Instrument Pool Potsdam.
- RR located 300 km east of the profile
- The MT transfer functions were estimated using robust single site and remote reference processing routines of the EMERALD software package (Ritter et al., 1998; Weckmann et al., 2005; Krings, 2007)
- Data quality could be further improved by using a frequency domain selection scheme (Weckmann et al., 2005) and a novel statistical approach for data pre-selection employing the concept of the Mahalanobis distance and the magnetic polarization direction to remove outliers and EM noise (Platz & Weckmann, 2019).
Phase tensor skew angles show that at low periods data is still 2D on the northern and southern part of the profile above the sedimentary basins. They are accompanied by small induction vectors. The complexity of the data increase with period.
Phase tensors show 3D dimensionality for the central part of the profile. Induction vectors in this area locate an off profile conductor east to the profile.

Dimensionality analysis reveal that sections of the data can be 2D approximated, yet there are structures that can only be interpreted by 3D inversion approach.

Red lines indicate location of fault systems (after Audemard et al., 2000); surface structures are color filled to represent their limits in $T = 512s$ (after Urbani, 2018).
3D inversion

The constrained model

- The initial model for the inversion included known surface structures, and their resistivities were taken from the average of the apparent resistivity of the station above them. Resulting on 25 Ωm and thickness of 10 km for the Maracaibo basin and 15 Ωm and 5 km thickness for the Barinas-Apure basin. The Background resistivity was 120 Ωm, and included the Mérida Andes.

Red lines indicate location of fault systems, black lines the boundaries of the surface structures (after Audemard et al., 2000; Urbani, 2018)
3D inversion

Station 43

- Total RMS = 1.24
- Total Z = 1.26
- Total T = 1.19
- 91 iterations
- Initial RMS 11.76

- Total RMS = 0.77
- Total Z = 0.78
- Total T = 0.77

GFZ
Helmholtz Centre Potsdam

measured
predicted
Zxy Zyx
Im Re
3D inversion

Station 116

- Total RMS = 1.24
- Total Z = 1.26
- Total T = 1.19
- 91 iterations
- Initial RMS 11.76

- Total RMS = 2.00
- Total Z = 1.75
- Total T = 2.34

GFZ
Helmholtz Centre
Potsdam

GFZ
Helmholtz Centre
Potsdam

● measured
- predicted

Zxy Zyx

Im Re
Surface structures

- The MB seems to be represented by conductors C1-C4, with their deeper extent corresponding with the location of several fault systems in surface (e.g. C1 – BNF, C4 - NWTS). The resistivity of the conductors is in the range of sedimentary rocks and the maximum depth of the basin (10 km) is consistent with its reported depth (Escalona & Mann, 2003, 2006a).
- The MA is recovered as two big resistors (R2 and R3) extending laterally to west, these resistor are limited to the east by the VF (C5) and split by the BF (C6).
- The conductive anomalies C7 and C8, south to the BF, correspond to the SETS and its associated piggy-back basins filled with Late Miocene - Quaternary molassic deposits, respectively.
- The BAB correlates in surface with the C10 with a maximum depth of 5 km.
- The low resistivity values observed in the conductive anomalies could also indicate that the fault systems may act as pathways for groundwater. Also, drainage and alluvial deposits are reported along the strike of the BF by Audemard & Audemard (2002).

- 3D inversions allow us to see the oblique extension of the fault systems and to map off profile conductors
One of the most interesting results of the data analysis and 3D inversion is an off profile conductor (black ellipse, C9) to the east. Although off profile, this structure has a large influence on most of the stations. Sensitivity test (not shown) confirm that this structure is necessary for the model to fit the data, and 3D inversion tests with synthetic data sets (not included) partially confirm its location.
This structure is interpreted as the detachment surface of the Trujillo block. Geodynamic modelling place this block between the Valera and Boconó fault systems with a detachment surface at 15 km depth (Dhont et al, 2012).
High conductivity crustal anomalies are often associated to the presence of fluids. The detachment of the Trujillo block could provide a pathway for fluids, which may originate from re-mineralization processes associated with the subduction of the Caribbean plate. Deep reaching fault systems of the area (e.g. the VF and the BF) may even provide pathways for such fluids towards surface.

© (Dhont et al, 2012). All rights reserved.

- VF – Valera fault
- BF – Boconó Fault
- BUF – Burbusay Fault

3D resistivity iso-surface at 10Ωm (green) against a depth slice at 20 km
Thank you for your time

Funding for this project was supplied by the GIAME project (FONACIT-2012002202) and Petróleos de Venezuela, S.A. (PDVSA-FUNVISIS cooperation agreement from 12/9/2012), with support from GFZ Potsdam (GFZ-FUNVISIS cooperation agreement from 11/12/2014). The equipment for the field work was supplied by the Geophysical Instrument Pool Potsdam (GIPP) of the GFZ Potsdam. JC gratefully acknowledges financial support from the German Academic Exchange Service (DAAD, German acronym)
Bibliography