Exploring the application of IRSL rock surface exposure dating of archaeological stone structures in Val di Sole, Italy

Lucas Ageby¹, Diego E. Angelucci², Dominik Brill¹, Francesco Carrer³, Helmut Brückner¹, and Nicole Klasen¹

¹Institute of Geography, University of Cologne, Germany, ²Dipartimento di Lettere e Filosofia, University of Trento, Italy, ³School of History, Classics and Archaeology, Newcastle University, UK

Introduction

Here we present preliminary chronological data from infrared stimulated (IRSL) rock surface exposure dating of dry stone structures in the Italian Alps. Direct dating of dry stone structures is challenging. Radiocarbon dating is usually not applicable to directly date such structures since no mortar was used between the rocks during construction. Thus, usually dating is restricted to archaeological layers associated with such structures. IRSL rock surface dating can potentially be used to constrain exposure periods recorded in surfaces of rocks which were collected from the structure walls. To examine this we have collected rocks from a dry stone wall in the Italian Alps.

Theoretical background

Exposure to daylight resets (bleaches) the IRSL signal in feldspar minerals in rocks. Sohbati et al. (2012) demonstrated that exposure ages for rock surfaces with unknown τᵣ can be calculated by constraining σᵦ in rock surfaces from the study site, for which the τᵣ is known. In this study, we use surfaces which were exposed during fieldwork, and collected one year later.

IRSL-depth profiles and preliminary ages

All calibration surfaces have been bleached (<1 % residual signal) in the outer 0.5 mm (Fig. 3). MZ001S-CAL-1 reaches saturation at 2 mm depth, and MZ005S-CAL and MZ051S-CAL reach saturation at 4-5 mm depth.

The IRSL signal in the surfaces of the rocks from enclosure MZ001S (Fig. 4) is bleached to ~ 3.5 mm and 7 mm of depth in MZ001S-1 and MZ001S-3, respectively. At no depth in MZ001S-2 has the IRSL signal reached below 1 % residual signal.

The fitted preliminary ages are 8 ± 5, 0.1 ± 0.1, and 100 ± 49 years of exposure for MZ001S-1, MZ001S-2, and MZ001S-3, respectively.

Study site

The study site is located at ~2300 m elevation in Val di Sole, Trentino, in the Italian Alps. This upland area has been used for pastoralism since the Early Bronze Age. Dry stone structures were constructed in the pastures, including large enclosure complexes, which were used to house livestock. The dates of construction for these structures are generally not known. Excavations from one large enclosure – MZ005S – indicate use during the Renaissance (Carrer & Angelucci, 2013). The samples presented in this poster were collected from another enclosure – MZ001S (Fig. 1) – for which a recovered potsherd indicates that the enclosure was in use during the mid-19th century (Dell’Amore, 2014/2015).

Methodology

Cores were extracted and sliced during red light conditions (Fig. 2).

The IRSL intensity was measured in a Risø TL/OSL readers at 50 °C for 300 s, following a 100 s long preheat at 180 °C. The IRSL intensity of each slice was sensitivity corrected by measuring the IRSL intensity following a beta test dose of ~17.4 Gy.

The global σᵦ from the calibration surfaces, and the subsequent τᵣ from enclosure surfaces were fitted with R version 3.6.1.

Fig. 1: Enclosure complex MZ001S. Samples MZ005S-CAL, MZ051S-CAL were collected from an adjacent valley. Photo: Diego Angelucci, 2018.

Fig. 2: The workflow for preparing slices for measurements.

Fig. 3: Global fitting of σᵦᵢ for the calibration surfaces. All surfaces were exposed for 1 year. μ was left unconstrained for each surface during fitting.

Fig. 4: Fitting of preliminary τᵣᵢ for the exposed surfaces from MZ001S-1. The IRSL-depth profiles were fitted using the global σᵦᵢ from the calibration surfaces. μ was left unconstrained for each surface during fitting.

Interpretation and summary

IRSL-depth profiles in exposed rocks from dry stone structures are investigated.

Calibration surfaces (1 year of exposure) indicate that the IRSL signal in the Val di Sole gneisses will bleach with depth during exposure.

Ages from 2 out of 3 surfaces from the dry stone enclosure MZ001S severely underestimate the expected minimum age of the enclosure. It is currently unclear if this age discrepancy is due to erosion of the surfaces, which removes part of the bleached front (e.g. Sohbati et al., 2018), or due to heterogeneity in the distribution of opaque minerals, which results in small scale spatial increases in light attenuation within the rocks (e.g. Meyer et al., 2018).

One rock – MZ001S-3 – provides a more realistic minimum age for enclosure MZ001S. However, the uncertainty of this date is high. Increased precision could be achieved by increasing the number of measured slices.

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project Number 37440011 - SFB 806

References

Ageby, Lucas. "2013 Final Archaeological Data Final Report Final Exposure dating by the light不忘初心 of rock surfaces in the mid-19th century (Dell’Amore, 2014/2015)."