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Summary

JMassAmbe

Experimental design

Manipulation of microbial communities

to achieve different richness and a _ community manipulations
community composition for bacteria QO D, (undiluted)
and fungi between treatments in the l O D (10?)
model soil. ificial soi <= D:(10%)
Art'f'ia' soil W B, (filtered to 0.8 um)

a) The microbial diversity of a soil inoculum 120 days incubation Q SF (spore forming)

obtained from a temperate deciduous forest

was manipulated by (1) sequential dilutions; \?V?_‘;/g 15°C 25°C

(2) excluding fungi ("Bonly"); and (3) ,
selecting for spore-forming microorganisms
(SF)

b) These inocula were added to a model soil
incubated for 120 days under two moisture
(30 and 60% water holding capacity) and
two temperature (15 and 25°C) regimes.

c
c) Images of model soils at the end of
incubation.
d) Average bacterial (black) and fungal (grey)
richness (operational taxonomic units) for d
each diversity treatment. @ 100
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Summary

Main results
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« CUE was positively related
to diversity but only in the
high moisture samples
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Moisture and temperature indirectly affected
CUE by impacting the microbial communities

Direct drivers of CUE: bacterial community
structure and diversity, fungal presence, enzyme
activity and microbially driven soil aggregation

Moisture

Temperature

0.25m

-0.18

Bacterla_\: Baftﬁnal Fungi
community alpha presence
structure

diversity

Soll
Aggregation
Score
R2=0.34

Activity /
Biomass

F:B ratio
Re=008 033

-0.37 Fisher's C = 4.233
AIC = 92.233
s P < 0.001

BIC = 226.987
s < 0.01 df=8
P <0.05 R2=0.30 P-value: 0.836

n =160



Introduction

Soil Carbon Cycling

Atmosphere
(800)

12

Contain up to 80% of terrestrial
carbon pool

Microorganisms regulate soll
carbon cycling

Net terrestrial
uptake > -
3 Microbial
respiration and
Soil carbon decomposition

Fossil pool
(10,000)

US DOE. Climate Placemat: Energy-Climate
Nexus, US Dep. of Energy Office of Science.
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Introduction

Climate drivers of CUE

Temperature

CMIP5 : 2081-2100

How CUE respond to changes in
climatic factors will determine the
fate of Soil Organic Carbon (SOC)

(°C per °C global mean change)
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Introduction

Microorganisms as drivers of CUE

Regulate soil carbon cycling nature FE—_——

Consensus Statement | Open Access ‘ Published: 18 June 2019

Important drivers but are also Scientists warni .
cientists’ warning to humanity:
affected by gIObaI Changes microorganisms and climate change

Ricardo Cavicchioli , William J. Ripple, [...] Nicole S. Webster
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Introduction

Microorganisms as drivers of CUE

Regulate soil carbon cycling nature p—-—-

REVIEWS

Consensus Statement | Open Access ‘ Published: 18 June 2019

Important drivers but are also

Scientists’ warning to humanity:

affected by gIObaI Changes microorganisms and climate change
Diversity loss and shifts in Bacteria Fungi

communities drive

ecosystem changes
(Hooper Nat. Lett. 2011)

Diversity (H’", bits)
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Introduction

Microorganisms as drivers of CUE

Regulate soil carbon cycling nature FE—_——

Consensus Statement | Open Access ‘ Published: 18 June 2019

Important drivers but are also Scientists warni .
cientists’ warning to humanity:
affected by gIObaI Changes microorganisms and climate change

Ricardo Cavicchioli , William J. Ripple, [...] Nicole S. Webster

Diversity loss and shifts in
communities drive

ecosystem changes
(Hooper Nat. Lett. 2011)

VS o S

T=10 T=15 T=20 T=25 T=275 T=30 T=35 T=40

Ecosystem Functioning: log1o(Y(ODggo))

Temperature can modulate
the diversity-ecosystem
function relationship
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Objectives

Drivers of CUE

Direct (climate)

Moisture

Temperature

CO,

SOM-C| CUE | MB-C
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Objectives

Drivers of CUE

Direct (climate) Abundance

Indirect (microbial
communities)

Enzyme
costs

Moisture

Temperature

@ @ Domeignoz-Horta, In review Nat. Comm. 4




Objectives

Drivers of CUE

e Our aim: Abundance

Empirical evidence for the
response of CUE to the
combined effects of warming,
drought and diversity loss

Enzyme

Moisture
costs

. Hypotheses: Temperature

Microbial diversity is positively
related to CUE

Climatic factors modulate the
diversity x CUE relationship somc | CUE MB-C
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Methods

Sterile Clay Silt Sand
C-free soil oA IR

Artificial soil
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Methods

Methods

Removal diversity approach

dilution

a D1 dilution
D2
Soil Do_3 a

>

suspension




Methods

Methods

Removal diversity approach

Bacteria only (Bonly) Filter to Heat and
Spore forming (SF) 0.8 um Phenol




Methods
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_ community manipulations
AssayS QO Dy (undiluted)

l— O D, (10%)
e < D, (109)
Artificial sol WV By (filtered to 0.8 um)
120 d * bation O SF (spore forming)
ays Incuba
CUE (80-H,O method)

S - 15°C 25°C
WHC °

Diversity of Bacteria and
Fungi (MiSeq)

Abundance of Bacteria
and Fungi (RT-qPCR)

Extracellular enzyme
activity (Betaglucosidase)

Soil aggregation (water
stable aggregate formation)
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Results
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Successful diversity manipulations

Diversity manipulations affected
microbial richness
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Results
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Drivers of microbial communities

Alpha diversity: diversity treatments

Community structure: diversity treatments and moisture and
temperature factors

Percentage of explained variance:

. Fungal alpha Bacterial Fungal
Bacterial alpha ) . . :
Treatments . . diversity community community
diversity (PD)
(shannon) structure structure
Diversity I 49.81*** 33,37°%** I 29.74%** 21.81%**
Moisture 0.04 0.11 10.57*** 2.92%**
Temperature 0.39 0.05 2.80%** 1.52*
Diversity:Moisture 1.73 2.68 5.96*** 1.91
Diversity:Temperature 2.46* 2.27 2.78* 1.86
Moisture:Temperature 1.61* 1.12 0.53 0.24
Diversity:Moisture:Temperature 1.88 0.95 1.41 1.11
Residuals 42.08 59.44 46.22 68.62
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Results
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Higher CUE in the more diverse treatment

Overall the results support
the hypothesis of more
diverse treatments with high

CUE a
60 ab I

Bony treatment have the b |

lowest CUE, suggesting that _ il ||

fungi presence was important & | |

to maintain high CUE 3 .
-+

Bacterial phylogenetic diversity
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Results
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Moisture affect the CUE x Diversity relationship

Diversity x CUE relationship: 30% 60%
positive relationship controlled ' ‘
by moisture 75l

)

%

/1) Dry soils: organisms might be in \

50 * ..
isolation |

CUE (

2) Wet soils: allowed synergistic [
interaction between microorganisms 25{
(e.g. sharing amino-acids) (Washina,

\ 2016) / ; EW rho:0.45***
I Ry P <0.001

AA M

4.

25 50 75 100 25 50 7.5 10«
Bacterial phylogenetic diversity
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Results
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CUE as a compilation of growth and respiration
i . 30% 60%
Growth increases faster with 6] " ——
phylogenetic diversity than _ _ P<0001
respiration 2 A
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Results
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Moisture x Temperature affect on CUE

Temperature affect on CUE was
constrained by moisture

Stronger relationship between
biomass production and diversity
in wet and 25°C.
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Results
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Indirect and direct drivers of CUE

e Structural Equation

|\/|Ode|ing (SEM) Moisture Temperature
0.17
0.39 0.2
. 0.52
Moisture and temperature —— — 018
indirectly affected CUE by communty e Fungi_ 0.16
I i i i structure diversity —
impacting the microbial T Re=0.02
communities ,
Q-27 -0.16
. . c Soi
Direct drivers of CUE: B a0 A;‘tfvy{{y‘e, Aggregation
bacterial community ~izoos  0.33| | Biomass Score
structure and diversity 021/ F0 Ri=034
’ 0.37 017/
fungal presence, enzyme D16 Fishors € = 4293
activity and microbially e B1G = 26 87
driven soil aggregation P <0.05 Ri=030 P-value: 0836
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Conclusion
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Take home message

* Moisture and temperature: drive indirectly CUE by impacting
the microbial communities. It was the microorganisms that
directly affected CUE

* The positive relationship between CUE and diversity was
controlled by moisture

 Our results suggests that drier soils diminished the synergistic
effect between diversity and CUE
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Questions?
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Fig S13. Water retention curve. Blue points indicate water potential measured by the HYPROP method
and the black line is a fitted model to the data based on the van Genuchen model.
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