

Biogeochemical significance of Intracellular calcification by Cyanobacteria

Neha Mehta, Feriel-Skouri Panet, Karim Benzerara IMPMC, Sorbonne University, CNRS

Paris, France

Date: May 4th, 2020

EGU session SSP1.5

Contact: neha.mehta@upmc.fr

@mneha123

Traditionally, cyanobacterial calcification was strictly considered extracellular

Cyanobacteria are known to promote the extracellular precipitation of Ca-carbonate minerals during the photosynthetic activity

> This process has resulted in the formation of carbonate deposits and a fossil record of importance for deciphering

the evolution of cyanobacteria and their impact on the global carbon cycle.

Detection of intracellular amorphous Ca-carbonate (iACC) inclusions in cyanobacteria *G. lithophora* challenged this paradigm

STEM-HAADF –EDXS of broad diversity of cyanobacteria forming iACC

(A,B,C): Cyanothece sp. PCC 7425.

(D, E, F) Ca. G. lithophora strain D10.

(G,H): Ca. S. calcipolaris G9.

Intracellular Ca-carbonate inclusions enriched in Ca-Mg-Ba-Sr as shown in SEM-EDX spectrum (A) The inclusions measure 200-500 nm in diameter and are amorphous as shown in selected-area electron diffraction pattern (B)

Accumulation of alkaline earth elements (AEE) in cyanobacteria forming iACC is unique

But first, let's look at the traditional understanding of role of AEE in cyanobacteria:

- Ca is biologically essential element
- Intracellular Ca concentrations are tightly regulated (~100nm)
- High cytosolic Ca, Ba, Sr and radioactive AEE concentrations are toxic
- Unlike Ca, Ba or Sr are not known to fill any biological role
- Micro-organisms rarely discriminate between AEE during uptake, owing to chemical similarity of AEE

AFF elements of interest

Accumulation of alkaline earth elements (AEE) in cyanobacteria forming iACC is unique

Ba/Sr enrichment by *G. lithophora* not reproduced *in vitro*

ACC in G. lithophora

$$\frac{Ba}{Ca} = 1370$$

$$\frac{Sr}{Ca} = 86$$

Synthetic ACC

$$\frac{Ba}{Ca} = 0.5$$

$$\frac{Sr}{Ca} = 0.2$$

Selective uptake of AEE by *G. lithophora*

- Uptake order: Ba>Sr>Ca
- Selective uptake not a shared trait of all cyanobacteria forming iACC

Radioactive AEE uptake by *G. lithophora*

G. lithophora sequesters trace concentrations of Ra-226 and Sr-90 in presence of Ca

Ca requirement of Cyanobacteria forming iACC

Dissolution of all Ca accumulated within iACC estimated to release upto 3 M cytosolic Ca.

Q. What is the role of AEE accumulation in cyanobacteria forming iACC?

Findings

Results of batch incubations revealed that Ba/Sr alone couldn't replace Ca demand of *G. lithophora*

Parallel cultures of *G. lithophora* were set-up in BG-11 amended with:

- Ba and Ca, 250 uM each, OR
- Ba, 250 uM, OR
- Sr and Ca, 250 uM each, OR
- Sr, 250 uM

Similar results in case of *Synechococcus* PCC 6312, which forms iACC but doesn't exhibit AEE selectivity...

STEM image showing *Synechococcus* PCC 6312 grown in presence of Ca+Sr. The white spheres are iACC, enriched in Sr and Ca.

The limited growth of *G. lithophora* in presence of Ba is recovered by addition of Ca

Experimental set-up:

G. lithophora grown in BG-11 modified with 50 uM Ba and no Ca→ After ~20 days, cell suspensions were spiked with 100 uM Ca

Recovery of cellular growth upon Ca spike is accompanied by recovery of Ba uptake by *G. lithophora*

Experimental set-up:

G. lithophora grown in BG-11 modified with 50 uM Ba and no Ca→ After ~20 days, cell suspensions were spiked with 100 uM Ca

What did we learn and not learn about the role of AEE in cyanobacteria forming iACC?

LESSONS LEARNED

- No direct evidence of any direct biological role of Ba or Sr in cyanobacteria forming iACC
- Intracellular pure Ba or Sr amorphous carbonates don't serve the same (biological) function as iACC
- Ca availability has a synergistic effect on growth and uptake of heavier AEE by G. lithophora

OPEN QUESTIONS

- Why G. lithophora selectively accumulates Ba over Sr and Ca?
 - Environmental adaptation? Or some evolutionary pay-off from the process?
- Why only certain cyanobacterial strains show selective uptake of AEE?
 - Comparative genomics study may provide answers
- What is the purpose of iACC and how Ca-Ba-Sr-Mg-enriched carbonates differ in their function from pure Ca-carbonate inclusion?

Biogeochemical implications of intracellular calcification: A few examples

 Overlooked geochemical reservoir of Ba/Sr in certain ecological niche. Eg: Cone pool Ba/Ca and Sr/Ca ration may serve as biosignature of intracellular calcification in geologic record

1- 10% of the bacterial community populating microbialites from cone pool at Little hot creek in California was accounted to close relatives of *G. lithophora*

Bioremediation of radioactive AEE

Thank you everyone for your patience with the new format and I look forward to a lively discussion and feedback

© @mneha123 Contact: <u>neha.mehta@upmc.fr</u>

