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How to tailor my model?

To tailor a model we can choose from alternative
® process representations
e solvers for the integration of the Ordinary Differential Equations (ODE) in time

e parametrisations

But how do we know

1. what is the optimal model configuration?
2. does the optimal configuration change over time?

3. how does it change in space?
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Proposed framework (based on the DYNIA framework by Wagener et al., 2003)

Flexible model

Choose a flexible
model environment

Input factors

Choose input factors (e.g.
process representation,
parametrisation) and de-
fine their prior distributions

Model configurations

Sample from input
factor combinations

Study area

Landscape characteris-
tics, meteorological data

Model performances

Conduct and evalu-
ate model simulations

Observations

Streamflow

Identifiability measure

How well identifiable
is each input factor?

—

N

Posterior distribu-
tions of input factors

Derive posterior distribu-
tions of input factors based
on model performances

Results

—(

Conclusions

NOTE: This is an interactive presentation. Click on the boxes to learn more. Please view in presentation mode.
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Study area and data: Isabena catchment, NE Spain
e Area: 425km?
e Mountainous topography: 500 m to 2700 m

e Rainfall spatially heterogeneous (annual sum
450 mm in lowlands, up to 1600 mm in mountains)

e Discharge at outlet 4.1m3/s (<1 m3/s to 370 m3/s)

o Hydrological regime determined by natural factors

c)

425°N

e Land cover: deciduous woodland, agriculture,
pasture, and bushes in the valley bottoms with
evergreen oaks and pines

423°N

e Many research projects, including intensive
hydro-sedimentological monitoring

e Datasets: 15m x 15m ASTER DEM, soil type and
land-use maps, meteorological data, discharge data

422°N

421°N 0 km 10 km 20 km
0.4°E 05°E 06°E 07°E

Thin black lines outline subbasins, red triangles mark the position of
discharge gauges, blue and green points show gauges of rainfall and

(Bronstert et al., 2014; Francke et al., 2018a; Garcia-Ruiz et al., 2001) other meteorological variables, respectively.
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ECo-Hydrological Simulation Environment

Class declaration) 'god;- " ) Programming by
| \, Generator / del developer
e Free and open source: https://github.com/echse T

¢ Two component framework l P l

ECHSE modeling
. framework
@ generic part

. Generic code
e model engine (user code)

Generated code  Manually written code
Class| . (Interior of the class’
lies | poiwde \Umethods

Problem-specific code

e Object-oriented programming concept (C++) e —

o User-friendly model implementation ECHSE framework.
e Pool of processes: simple exchange and extension of

. . Classes B Mo B

implementations

. . . Objects o

e Set of numerical integration schemes (ODE solvers) (Otisct groups) Q@ =
o Arbitrary model conception (lumped vs. distributed, e >

conceptual vs. process-oriented) Mode!

(Kneis, 2015)

.
Q Q Q Model engine implementation.
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https://github.com/echse

Implemented model engine

Conception of implemented engine based on the
WASA-SED model

o Process-oriented hydrological model

o Complex hierarchical spatial discretisation scheme
e Efficient simulation of hillslope-scale processes

e Adapted to semi-arid environments
e Lateral runoff redistribution

e Hortonian runoff
o Ex- and re-infiltration

— Particularly suited for environments with heterogeneous
vegetation cover and considerable amounts of bare soil

— Successfully applied in the Isdbena and similar catchments

(Bronstert et al., 2014; Francke et al., 2018b; Giintner and Bronstert, 2004; Mueller et al., 2009, 2010)

>
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Input factor definitions

Input factors and realisations

Input factors are adjustable elements of a model set-up. (Pianosi et al., 2016)
Specific values of the, in this case, discrete-valued input factors are denoted as realisations.

Input factor definitions for this case-study

la Evapotranspiration processes (32 realisations)

@ Penman-Monteith, Shuttleworth & Wallace, alternatives for sub-processes (e.g. stomatal resistance)
Ib Soil water processes (8 realisations)
o Alternatives for infiltration, percolation, soil water retention

Ic Runoff concentration processes (2 realisations)

ODE solvers (8 realisations)

Parametrisations (1000 realisations)
@ 7 parameters; realisations obtained by sampling from parameter distributions

= The realisations define the prior distribution for each input factor (equal weight for each realisation, i.e.
uniform distribution assumed)

a

Tobias Pilz et al How to Tailor my Process-based Hydrological Model? EGU 2020 &
) 5




Model configurations and set-up

Model configurations

® 32 x 8 x 2 x 8x 1000 = 4096000 possible configurations from input factor combinations
= computationally not feasible

e 12000 samples were randomly drawn

Model set-up for the case study (independent of -
specific configuration)

y
—
|

7]
|
kS
soil
=2
2

o Delineation of model units (subbasins, LUs, TCs, SVCs)
using the lumpR software (pi. et 1, 2017)

o Derivation of soil and vegetation parameters from
databases and pedotransfer functions

o Preprocessing of meteorological data (gap filling, spatial [
interpolation) with ECHSE tools (e, 2012)

D
D

°
I
=

Tobias Pilz et al How to Tailor my Process-based Hydrological Model? EGU 2020 &
5



Model simulation and performance evaluation

Simulation settings

e Three years from 1 January 2013 to 31 December 2015

e Daily resolution

e Up to 20 iterations of warm-up years to bring model states into equilibrium

Performance evaluation

e Case-specific choice of performance metric: root mean square error (RMSE)

e For dynamic analysis computed over moving window (w = 15 resulting 31 days) for each

d+w

1
simulation day d: RMSE(d) = ,| ——— Z
2w+1 ot (

go observed discharge

b
|||
|

2
gs(i) — qo(i)) with gs simulated and

|
iIil
| IIIII
1

°
I
=
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Determination of posterior distributions

Bayesian approach: Posterior oc Prior x Likelihood

e Prior is defined by the realisations (and their weights) of each input factor

o Likelihood is derived by taking additional data into account = many approaches exist

In this study employs an informal approach

e Oriented at the GLUE approach (seven and gintey, 1092)

e Separate model configurations into behavioural and non-behavioural groups based on their
performances

e Here: 10% best performing configurations considered as behavioural
=- 1200 posterior model configurations

= Remaining realisations and their frequencies define the posterior distribution of each input
factor
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Identifiability measure

For each input factor

® Nprior is the number of realisations in the prior distribution
® Npost is the remaining number of realisations in the posterior distribution

-1 .
o IM=1— % with Npriory Npost eN

prior —

That means

e IM = 0 is obtained when npost = Nprior
— all realisations of an input factor defined in its prior distribution are still present in the
posterior distribution
— the input factor is not identifiable
e IM =1 is obtained when npos: =1
— only one realisation left in the posterior distribution
— the input factor is well identifiable
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Results: discharge simulations

e Most observation values fall into 90 %
probability range of model configurations
o Large peaks often underestimated
— Partly attributable to poorly detected
heavy precipitation events
o Falling limbs of discharge events
sometimes not well matched
— Measurement uncertainty?
— Missing calibration?
— Optimal model structure not yet
included?

Discharge (m®/s)

2013 2014

Year
— Observed — Best model configuration
Gray area shows the 90 % probability range of all (prior, uncalibrated) model
configurations.
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Results: static identifiability measure

e Only Evapotranspiration and —
Parametrisation exhibit some degree of B =
identifiability oDE soter

e Consistently zero identifiability for ODE 5 e
solver, Runoff concentration, and Soil 5 Rt et g o
water - e

— All implemented realisation can lead to o
acceptable model performance — ‘
o Relatively consistent results for different o P A o
Identifiability
subcatchments (eXC@ pt Lascuarre) Black errorbars represent the 95 % confidence interval estimated via bootstrapping.

D
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Results: posterior distributions of input factors

o Soilwater [ RC | [ ODE soiver
- B BgEs = B_gl-
Evapotranspiration E;QQEBHEBBEEHB Higef " heea | [a8"F O]
e Penman-Monteith clearly superior to QZZ:BBEEEEEBBBEBBBEH Rk TN UL Lk
Shuttleworth & Wallace except for R
Lascuarre EBBHHBBBBBBHBBBB FieB g s I
B8°8
e For subprocesses no obvious pattern i ——
5.2 onoal HAg B B || ges
| ﬁHEEB EBBBEB BB 8a® EEEE EEEE’g
il water 8 e ) Ea
Soll wate : eBgeie, g ¢ g ey Poaflf
. . i T E e e SRR BAESg"8 Bses L
o Retention model of highest importance:
van Genuchten (mostly) slightly superior E;EHBBHEHEBEBBHHBEH FoeBage | B EEE§
to Campbe” e Penman-Monteith Shuttleworth & Wallace H 3 g “Acouracy § Aocuracy =
o Realisations of other processes (infiltration 5 3381 %
and percolation approaches) equally £ g 2

plausible
Boxes represent the 95 % confidence interval and mean (black horizontal line) estimated
via bootstrapping.
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Results: posterior distributions of input factors

mostly achieve better performances

Runoff concentration (RC) - apa8Agag 8 Begh e 1 o8
e Conceptual approach with delay factor === 4
. . . BBRERE EEEEBBE B EEEIEIE|EI g EIEIEIEI g
(calibration parameter) superior (except B988g B B eeslt
Lascuarre i =
) BHHHBHEHBEBHBHEH EBBHEEEEE MeES i
DE solver B B [mE |
ODE solve EHEEBEEBEHB g a8 e T8 Lo alf
e Unconstrained solvers mostly superior to === éaa - B
solvers with solution constraints (physical ot Al B8 amfgs (| Pacdl
limits) (phy aoatgoefafacgng O BABOGEE| B || jeaas 7 (]
— Model performance compensates for EEEHEBHHHEEEEBHHEEH GE N o [EEE EEEE
unrealistic model states? —— SRS B — P
e Solvers with higher accuracy (higher order) AR EIS
o] 23 ﬁ

Solution constraints £

— Sometimes even simple Euler approach
achieves high importance (Lascuarre) Boxes represent the 95 % confidence interval and mean (black horizontal line) estimated

via bootstrapping.
[N

>
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Results: dynamic posterior distributions

Evapotranspiration

e Most of the time Penman-Monteith
superior

e During dry periods Shuttleworth &

Soil water

conditions

D

Next: dynamic posterior distributions Il

Shuttleworth & Wallace

Penman-Monteith

Campbell u

\F fﬂ‘ .lm“ﬂh '%I[\‘ [
van Genuchten LMW»J L \”

. . C |
Wallace gains importance . J I | ‘ {
Physics-based ‘ WU\}\M 5
kb
Solution constraints
" ) TA_I.______-._- .il____L SR A ETR __§
o Highly diverse patterns — posterior Unconstrained M : L m
distribution changes with flow / wetness s ﬂ.
Red: low posterior freq less plausible repi ations. Green: high posterior
frequency, more plausible representations. Black lines: discharge hydrograph (gauge
Capella = catchment outlet).
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Results: dynamic posterior distributions

Runoff concentration Stutevorn & Walace | 2 !ll !
e During peak flows: conceptual approach romsons 904 =

favoured Campbel o ‘-‘ 1 nI AL‘ | ' ;
[ ] v " H
Most of the time no clear identifiability an Genuchien mep ! s L
Conceptual -
A
O D E SOIVer Physics-based imwm LR J

e Highly diverse patterns — posterior ].

. . . . Solution constraints "
distribution changes with flow / wetness T wm- | :
conditions P M .AJJJL ul's e L

o Unconstrained solvers slightly favoured sctepoetr o S350 00 02
. . .. Red: low posterior frequency, less plausible vepresentatlcns Green: high posterior
durln h| h ﬂOWS wet Condltlons frequency, more plausible representations. Black lines: discharge hydrograph (gauge
g nhig

Capella = catchment outlet).
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Conclusions

The proposed framework

consists of coupling a flexible model environment with dynamic identifiability analysis
can be used to identify most plausible model configuration(s)

is generic and leaves many options to the user in terms of software, definition and implementation of input
factors, model evaluation etc.

can provide valuable information about process behaviour in a catchment

— Which process representations / underlying theory explains observed dynamics best?

The case study shows that

parametrisation and evapotranspiration are the best identifiable input factors

model structure identifiability varies over time

identifiability is influenced by wetness conditions and landscape characteristics

there are unexpected results possibly due to complex interactions and compensations effects between ODE
solver, process representation and parametrisation

— Unconstrained ODE solvers lead to unrealistic model states but better model performance

/Y
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