

How to Tailor my Process-based Hydrological Model? Dynamic Identifiability Analysis of Flexible Model Structures

Tobias Pilz, Till Francke, Gabriele Baroni, Axel Bronstert

EGU General Assembly 2020, Vienna, Austria

04 May 2020

How to tailor my model?

To tailor a model we can choose from alternative

- process representations
- solvers for the integration of the Ordinary Differential Equations (ODE) in time
- parametrisations

But how do we know

- 1. what is the optimal model configuration?
- 2. does the optimal configuration change over time?
- 3. how does it change in space?

Proposed framework (based on the DYNIA framework by Wagener et al., 2003)

NOTE: This is an interactive presentation. Click on the boxes to learn more. Please view in presentation mode.

FGU 2020

Study area and data: Isábena catchment, NE Spain

- Area: 425 km²
- Mountainous topography: 500 m to 2700 m
- Rainfall spatially heterogeneous (annual sum 450 mm in lowlands, up to 1600 mm in mountains)
- Discharge at outlet $4.1 \,\mathrm{m}^3/\mathrm{s}$ ($<1 \,\mathrm{m}^3/\mathrm{s}$ to $370 \,\mathrm{m}^3/\mathrm{s}$)
- Hydrological regime determined by natural factors
- Land cover: deciduous woodland, agriculture, pasture, and bushes in the valley bottoms with evergreen oaks and pines
- Many research projects, including intensive hydro-sedimentological monitoring
- Datasets: 15 m × 15 m ASTER DEM, soil type and land-use maps, meteorological data, discharge data

(Bronstert et al., 2014; Francke et al., 2018a; García-Ruiz et al., 2001)

Thin black lines outline subbasins, red triangles mark the position of discharge gauges, blue and green points show gauges of rainfall and other meteorological variables, respectively.

ECo-Hydrological Simulation Environment

Generator

Generated code

ECHSE framework.

ECHSE modeling framework

Generic code

Classes

Objects

Model

(Object groups)

Programming by

model developer

Manually written code

Interior of the class

Problem-specific code

(Compiler) - Executable

- Free and open source: https://github.com/echse
- Two component framework
 - generic part
 - model engine (user code)
- Object-oriented programming concept (C++)
- User-friendly model implementation
- Pool of processes: simple exchange and extension of implementations
- Set of numerical integration schemes (ODE solvers)
- Arbitrary model conception (lumped vs. distributed, conceptual vs. process-oriented)

(Kneis, 2015)

Model engine implementation.

Implemented model engine

Conception of implemented engine based on the WASA-SED model

- Process-oriented hydrological model
- Complex hierarchical spatial discretisation scheme
 - Efficient simulation of hillslope-scale processes
- Adapted to semi-arid environments
 - Lateral runoff redistribution
 - Hortonian runoff
 - Ex- and re-infiltration
- $\rightarrow\,$ Particularly suited for environments with heterogeneous vegetation cover and considerable amounts of bare soil
- $\,\rightarrow\,$ Successfully applied in the Isábena and similar catchments

(Bronstert et al., 2014; Francke et al., 2018b; Güntner and Bronstert, 2004; Mueller et al., 2009, 2010)

Source: Güntner (2002)

1 Sub-basin / Municipality / Grid cell

2 Landscape unit (LU)

3 Terrain component (TC)

geographically referenced location Data source of basins:

Terrain analysis of 30"-USGS-DEM and digitized topographic maps Municipalities:

(municipios)

Polygons with geographically referenced

Similarity of -major landform

general lithology soil associations toposequences

Fraction of area of landscape unit (no

-position within toposequence -soil associations

Soil (sub-)type Vegetation / land cover

geographic reference) Similarity of -slope gradients

Fraction of area of terrain component Characterized by specific combination of

Representative profile of soil-vegetation componen —Several soil horizons of variable depth —I giver limit by depth of

Input factor definitions

Input factors and realisations

Input factors are adjustable elements of a model set-up. (Pianosi et al., 2016)

Specific values of the, in this case, discrete-valued input factors are denoted as realisations.

Input factor definitions for this case-study

la Evapotranspiration processes (32 realisations)

Penman-Monteith, Shuttleworth & Wallace, alternatives for sub-processes (e.g. stomatal resistance)

Ib Soil water processes (8 realisations)

• Alternatives for infiltration, percolation, soil water retention

Ic Runoff concentration processes (2 realisations)

II ODE solvers (8 realisations)

III Parametrisations (1000 realisations)

- 7 parameters; realisations obtained by sampling from parameter distributions
- ⇒ The realisations define the **prior distribution** for each input factor (equal weight for each realisation, i.e. uniform distribution assumed)

Model configurations

- $32 \times 8 \times 2 \times 8 \times 1000 = 4096000$ possible configurations from input factor combinations \Rightarrow computationally not feasible
- 12 000 samples were randomly drawn

Model set-up for the case study (independent of specific configuration)

- Delineation of model units (subbasins, LUs, TCs, SVCs) using the lumpR software (Pilz et al., 2017)
- Derivation of soil and vegetation parameters from databases and pedotransfer functions
- Preprocessing of meteorological data (gap filling, spatial interpolation) with ECHSE tools (Kneis, 2012)

Simulation settings

- Three years from 1 January 2013 to 31 December 2015
- Daily resolution
- Up to 20 iterations of warm-up years to bring model states into equilibrium

Performance evaluation

- Case-specific choice of performance metric: root mean square error (RMSE)
- ullet For dynamic analysis computed over moving window (w=15 resulting 31 days) for each

simulation day
$$d$$
: $RMSE(d) = \sqrt{\frac{1}{2w+1} \sum_{i=d-w}^{d+w} \left(q_s(i) - q_o(i)\right)^2}$ with q_s simulated and q_o observed discharge

Bayesian approach: Posterior ∝ Prior × Likelihood

- Prior is defined by the realisations (and their weights) of each input factor
- Likelihood is derived by taking additional data into account ⇒ many approaches exist

In this study employs an informal approach

- Oriented at the GLUE approach (Beven and Binley, 1992)
- Separate model configurations into behavioural and non-behavioural groups based on their performances
- ullet Here: 10 % best performing configurations considered as behavioural
- \Rightarrow 1200 posterior model configurations
- ⇒ Remaining realisations and their frequencies define the posterior distribution of each input factor

For each input factor

- n_{prior} is the number of realisations in the prior distribution
- n_{post} is the remaining number of realisations in the posterior distribution
- $\mathit{IM} = 1 \frac{n_{post} 1}{n_{prior} 1}$ with $n_{prior}, n_{post} \in \mathbb{N}$

That means

- IM = 0 is obtained when $n_{post} = n_{prior}$
 - ightarrow all realisations of an input factor defined in its prior distribution are still present in the posterior distribution
 - \rightarrow the input factor is not identifiable
- IM = 1 is obtained when $n_{post} = 1$
 - $\,\,
 ightarrow\,$ only one realisation left in the posterior distribution
 - ightarrow the input factor is well identifiable

Results: discharge simulations

- Most observation values fall into 90 % probability range of model configurations
- Large peaks often underestimated
 - → Partly attributable to poorly detected heavy precipitation events
- Falling limbs of discharge events sometimes not well matched
 - → Measurement uncertainty?
 - → Missing calibration?
 - Optimal model structure not yet included?

Grav area shows the 90 % probability range of all (prior, uncalibrated) model configurations.

Results: static identifiability measure

- Only Evapotranspiration and Parametrisation exhibit some degree of identifiability
- Consistently zero identifiability for ODE solver, Runoff concentration, and Soil water
 - ightarrow All implemented realisation can lead to acceptable model performance
- Relatively consistent results for different subcatchments (except Lascuarre)

Black errorbars represent the $95\,\%$ confidence interval estimated via bootstrapping.

Results: posterior distributions of input factors

Evapotranspiration

- Penman-Monteith clearly superior to Shuttleworth & Wallace except for Lascuarre
- For subprocesses no obvious pattern

Soil water

- Retention model of highest importance: van Genuchten (mostly) slightly superior to Campbell
- Realisations of other processes (infiltration and percolation approaches) equally plausible

Boxes represent the $95\,\%$ confidence interval and mean (black horizontal line) estimated via bootstrapping.

Results: posterior distributions of input factors

Runoff concentration (RC)

 Conceptual approach with delay factor (calibration parameter) superior (except Lascuarre)

ODF solver

- Unconstrained solvers mostly superior to solvers with solution constraints (physical limits)
 - → Model performance compensates for unrealistic model states?
- Solvers with higher accuracy (higher order) mostly achieve better performances
 - → Sometimes even simple Euler approach achieves high importance (Lascuarre)

Boxes represent the 95% confidence interval and mean (black horizontal line) estimated via bootstrapping.

Evapotranspiration

- Most of the time Penman-Monteith superior
- During dry periods Shuttleworth & Wallace gains importance

Soil water

 Highly diverse patterns → posterior distribution changes with flow / wetness conditions

Red: low posterior frequency, less plausible representations. Green: high posterior frequency, more plausible representations. Black lines: discharge hydrograph (gauge Capella = catchment outlet)

Runoff concentration

- During peak flows: conceptual approach favoured
- Most of the time no clear identifiability

ODE solver

- Highly diverse patterns → posterior distribution changes with flow / wetness conditions
- Unconstrained solvers slightly favoured during high flows / wet conditions

Red: low posterior frequency, less plausible representations. Green: high posterior frequency, more plausible representations. Black lines: discharge hydrograph (gauge Capella = catchment outlet)

Conclusions

The proposed framework

- consists of coupling a flexible model environment with dynamic identifiability analysis
- can be used to identify most plausible model configuration(s)
- is generic and leaves many options to the user in terms of software, definition and implementation of input factors, model evaluation etc.
- can provide valuable information about process behaviour in a catchment
 - ightarrow Which process representations / underlying theory explains observed dynamics best?

The case study shows that

- parametrisation and evapotranspiration are the best identifiable input factors
- model structure identifiability varies over time
- identifiability is influenced by wetness conditions and landscape characteristics
- there are unexpected results possibly due to complex interactions and compensations effects between ODE solver, process representation and parametrisation
 - ightarrow Unconstrained ODE solvers lead to unrealistic model states but better model performance

References I

Beven, K. and A. Binley (1992). "The future of distributed models: Model calibration and uncertainty prediction". In: Hydrological Processes 6.3, pp. 279–298. DOI: https://doi.org/10.1002/hyp.3360060305.

Bronstert, A., J.-C. de Araújo, R. J. Batalla, A. C. Costa, J. M. Delgado, T. Francke, S. Foerster, A. Guentner, J. A. López-Tarazón, G. L. Mamede, P. H. Medeiros, E. Mueller, and D. Vericat (2014). "Process-based modelling of erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments". In: Journal of Soils and Sediments 14.12, pp. 2001–2018. DOI: https://doi.org/10.1007/s11368-014-0994-1.

Francke, T., S. Foerster, A. Brosinsky, E. Sommerer, J. A. Lopez-Tarazon, A. Güntner, R. J. Batalla, and A. Bronstert (2018a). "Water and sediment fluxes in Mediterranean mountainous regions: comprehensive dataset for hydro-sedimentological analyses and modelling in a mesoscale catchment (River Isábena, NE Spain)". In: Earth System Science Data 10.2, pp. 1063–1075. DOI: https://doi.org/10.5194/essd-10-10163-2018.

Francke, T., G. Baroni, A. Brosinsky, S. Foerster, J. A. López-Tarazón, E. Sommerer, and A. Brosstert (2018b). "What did really improve our meso-scale hydrological model? A multi-dimensional analysis based on real observations". In: Water Resources Research 54.11, pp. 8594–8612. DOI: https://doi.org/10.1029/2018/R022813.

García-Ruiz, J. M., S. Beguería, J. I. López-Moreno, A. Lorente, and M. Seeger (2001). Los recursos hídricos superficiales del Pirineo aragonés y su evolución reciente. Logroño, Spain: Geoforma.

Güntner, A. (2002). Large-scale hydrological modelling in the semi-arid North-East of Brazil. PIK Report 77. Potsdam, Germany: Potsdam Institute for Climate Impact Research.

Güntner, A. and A. Bronstert (2004). "Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semi-arid areas". In: Journal of Hydrology 297.1–4, pp. 136–161. DOI: https://doi.org/10.1016/j.jhydrol.2004.04.008.

Kneis, D. (2012). geostat: Utilities for spatial interpolation. R package version 0.1. uRL: https://github.com/echse/echse_tools/tree/master/R/packages/geostat

References II

Kneis, D. (2015). "A lightweight framework for rapid development of object-based hydrological model engines". In: Environmental Modelling & Software 68, pp. 110–121. DOI: https://doi.org/10.1016/j.envsoft.2015.02.009.

Mueller, E. N., T. Francke, R. J. Batalla, and A. Bronstert (2009). "Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the Southern Pyrenees". In: CATENA 79.3, pp. 288–296. DOI: https://doi.org/10.1016/j.catena.2009.06.007.

Mueller, E. N., A. Güntner, T. Francke, and G. Mamede (2010). "Modelling sediment export, retention and reservoir sedimentation in drylands with the WASA-SED model". In: Geoscientific Model Development 3.1, pp. 275–291. DOI: https://doi.org/10.5194/gmd-3-275-2010.

Pianosi, F., K. Beven, J. Freer, J. W. Hall, J. Rougier, D. B. Stephenson, and T. Wagener (2016). "Sensitivity analysis of environmental models: A systematic review with practical workflow". In: Environmental Modelling & Software 79, pp. 214–232. DOI: https://doi.org/10.1016/j.envsoft.2016.02.008.

Pilz, T., T. Francke, and A. Bronstert (2017). "lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models". In: Geoscientific Model Development 10.8, pp. 3001–3023. DOI: https://doi.org/10.5194/gmd-10-3001-2017.

Wagener, T., N. McIntyre, M. J. Lees, H. S. Wheater, and H. V. Gupta (2003). "Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis". In: Hydrological Processes 17.2, pp. 455–476. DOI: https://doi.org/10.1002/hyp.1135.

