Quality assessment of GNSS reference stations: Criteria and Thresholds

Juliette Legrand, Carine Bruyninx
Royal Observatory of Belgium

Contact: Juliette.Legrand@oma.be
• Express reliably GNSS position or position/velocity solutions in a given reference frame (e.g. ITRF2014, IGS14, ETRF2014...) ⇒ the identification and the usage of ‘stable’ and ‘reliable’ reference stations

• The EUREF Permanent Network has been set up to maintain and give access to the European reference Frame ETRS89 ⇒ EUREF computes and publish the ‘EPN multi-year solution’ in the latest ITRS/ETRS89 realizations. However, not all EPN stations are by definition suitable of reference stations.

• To help the identification of the best EPN reference stations, a new station classification was developed.

• A web tool is in development to help the user to choose reliable reference stations
EPN multi-year position and velocity solution

- Multi-year position & velocity solution
 - using CATREF [Altamimi et al. 2007]
 - expressed in IGS14

- EPN daily SINEXs: 1996-now
 - EPN-repro2 solutions (1996-2013)
 - Operational solutions (2014-now)

- Solution is updated each 15 weeks:
 - Official Positions & Velocities in IGS14, ETRF2000 and ETRF2014
 - List of position & velocity discontinuities
 - List of daily outliers
 - Cleaned position time series
 - Former Station Classification (Class A&B)
 - Revised Station Classification
 - Rapid time series (updated on a daily basis)

http://epncb.oma.be/_productsservices/coordinates

http://epncb.oma.be/_productsservices/timeseries
EPN multi-year solution: Former Station Classification

Class A
Suitable as reference station for ETRS89 densifications
Positions at the 1 cm precision at all epochs and velocities at the 1 mm/yr precision
Positions & Velocities are published

Class B
Not suitable as reference station for ETRS89 densifications
Positions have a 1 cm precision at the epoch of minimal variance
Positions at epoch of minimal variance are published
Velocities are not published
New classification

• Why changing?
 • Class A & B are not flexible enough
 • Class A are not necessarily perfect
 • No velocity published for Class B stations is too drastic
 • Ability of a station to be used as reference station depend on the application (EPN-like multi-year solutions, short multi-year solutions (4-5 years), position solutions)
 • Current definitions seems simple, but hard to apply. In practice, it depends on the subjective choice of the EUREF reference frame coordinator
 • Need objective criteria and more flexibility

⇒ New Station Classification:
 • Several station classes based on the station performances
 • Several criteria have been selected in order to quantify the quality of a reference station
 • Thresholds defined with 6 different classes for the EPN stations
Criteria used

Position Time Series Scattering & Signals

- Time Series RMS:
 - RMS_N, RMS_E, RMS_U

Reliability of the Velocity Estimation

- σ_V from Hector
- CATREF-Hector Velocity differences
- temporal correlated noise \Rightarrow more realistic velocity error estimates

Amplitude of the annual signal

- $A(1Y)_N$, $A(1Y)_E$, $A(1Y)_U$

Stability of the Station Over Time

- dV_{north} [mm/yr]
- dV_{east} [mm/yr]
- dV_{up} [mm/yr]

Velocity Variability

- NdV [mm/yr]
- EdV [mm/yr]
- $ UdV$ [mm/yr]
Criteria used

Position Time Series Scattering & Signals
- Time Series RMS: RMS_N, RMS_E, RMS_U

Amplitude of the annual signal:
- $A(1Y)_N$, $A(1Y)_E$, $A(1Y)_U$

Reliability of the Velocity Estimation
- σV from Hector
- CATREF-Hector Velocity differences
- σ_{bias}, σ_{scale} [mm/yr]

Stability of the Station Over Time
- Temporal correlated noise \Rightarrow more realistic velocity error estimates
- dV_{bias}, dV_{scale} [mm/yr]
- NdV, EdV, UdV [mm/yr]
Position Time Series, Scattering & Signals

- RMS over the full time span of the residual position time series
- Amplitude of the annual signal
Criteria used

Position Time Series Scattering & Signals
- Time Series RMS
 - RMS_{N}, RMS_{E}, RMS_{U}

Reliability of the Velocity Estimation
- σV from Hector
- more realistic velocity error estimates

Amplitude of the annual signal
- $A(1\text{Y})_{\text{N}}$, $A(1\text{Y})_{\text{E}}$, $A(1\text{Y})_{\text{U}}$

CATREF-Hector Velocity differences

Stability of the Station Over Time
- NdV, EdV, UdV

Velocity Variability

temporal correlated noise

ROYAL OBSERVATORY OF BELGIUM
Reliability of the Velocity Estimation

- CATREF software (Altamimi et al., 2007) based on least squares \(\Rightarrow\) velocity error estimates are too optimistic

- Hector developed by [Bos et. al. 2013] used to estimate a linear trend, annual, semi-annual signals, assuming temporal correlated noise (power-law + white noise) \(\Rightarrow\) more realistic error estimates from Hector \((\sigma_{VN}, \sigma_{VE}, \sigma_{VU})\)

- Velocity differences between CATREF and Hector estimations \((dV_N, dV_E, dV_U)\) allow to assess the reliability of the velocity estimation
Criteria used

Position Time Series Scattering & Signals

- Time Series RMS: RMS_{N}, RMS_{E}, RMS_{U}

Amplitude of the annual signal
- $A(1\text{Y})_{\text{N}}$, $A(1\text{Y})_{\text{E}}$, $A(1\text{Y})_{\text{U}}$

Reliability of the Velocity Estimation

- $\sigma_{\text{V, Hector}}$ [mm/yr]
- $\sigma_{\text{V, CATREF-Hector}}$ [mm/yr]
- $\sigma_{\text{V, Temporal Correlation}}$ [mm/yr]

Stability of the Station Over Time

- ΔV_{N}, ΔV_{E}, ΔV_{U}

Velocity Variability

- RMS_{V}

Temporal correlated noise

- More realistic velocity error estimates

ROYAL OBSERVATORY OF BELGIUM
Velocity Variability (1)

Input time series: position time series with jumps and trends

Differences between the velocities based on 4 years of data and the velocity based on full data set of the station
Velocity Variability (2)

Input time series: position time series with jumps and trends

Differences between the velocities based on 8 years of data and the velocity based on full data set of the station
Velocity Variability (3)

Input time series: position time series with jumps and trends

Differences between the velocities based on various time windows (3 to 17 years) and the velocity based on full data set of the station.
Velocity Variability (NdV, EdV, UdV):
RMS of the agreement between the station velocities obtained from the moving time windows (> 4 years) and the velocity obtained using the full time series.

for 5 stations (ONSA00SWE, VIGO00ESP, TERS00NLD, MORP00GBR, MEDI00ITA)

<table>
<thead>
<tr>
<th></th>
<th>ONSA00SWE</th>
<th>VIGO00ESP</th>
<th>TERS00NLD</th>
<th>MORP00GBR</th>
<th>MEDI00ITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NdV (mm/yr)</td>
<td>0.12</td>
<td>0.09</td>
<td>0.24</td>
<td>0.27</td>
<td>0.50</td>
</tr>
<tr>
<td>EdV (mm/yr)</td>
<td>0.07</td>
<td>0.12</td>
<td>0.19</td>
<td>0.29</td>
<td>0.45</td>
</tr>
<tr>
<td>UdV (mm/yr)</td>
<td>0.29</td>
<td>0.15</td>
<td>0.33</td>
<td>0.61</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Selection Criteria Plots:
Black circles: values for each of the criteria for the stations ONSA00SWE, TERS00NLD, MORP00GBR, MEDI00ITA
Bars: the green, orange and red colours highlights the percentiles 25, 50, 75, 85, 95 for the EPN stations.
The Thresholds

- Goal: find the reliable reference stations
- Idea: reject the station that have the worst performances for each criterion
- The thresholds are based on 3 different percentiles: percentile 75, 85 and 95.
- Thresholds are relaxed step by step in order to define the different classes.

Percentiles

- **Percentile 75**: 75% best stations
- **Percentile 85**: 25% worst stations
- **Percentile 95**: 15% worst stations
- **Percentile 95**: 5% worst stations
The Station Classes

- Seven classes have been defined by relaxing the thresholds step by step.

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
<th>Velocity variability</th>
<th>Timeseries RMS</th>
<th>Amplitude 1Y signal</th>
<th>$D_{\text{Catref-Hector}}$</th>
<th>σ_{Hector}</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>55</td>
<td>< Percentile 75</td>
<td></td>
<td>< Percentile 75</td>
<td></td>
<td></td>
<td>Most Stable Stations</td>
</tr>
<tr>
<td>C1</td>
<td>28</td>
<td>< Percentile 75</td>
<td></td>
<td>< Percentile 85</td>
<td></td>
<td></td>
<td>Stable but Noisy or with Seasonal Signals</td>
</tr>
<tr>
<td>C2</td>
<td>51</td>
<td>< Percentile 75</td>
<td>No threshold</td>
<td></td>
<td>< Percentile 85</td>
<td></td>
<td>Less Stable</td>
</tr>
<tr>
<td>C3</td>
<td>16</td>
<td>< Percentile 85</td>
<td></td>
<td>< Percentile 85</td>
<td></td>
<td></td>
<td>Even Less Stable</td>
</tr>
<tr>
<td>C4</td>
<td>8</td>
<td>Not Available - Short time series</td>
<td></td>
<td>< Percentile 85</td>
<td></td>
<td></td>
<td>Less Reliable</td>
</tr>
<tr>
<td>C5</td>
<td>66</td>
<td>< Percentile 85</td>
<td>No criteria > Percentile 95</td>
<td></td>
<td></td>
<td></td>
<td>No velocity published</td>
</tr>
<tr>
<td>C6</td>
<td>115</td>
<td>velocity variability > Percentile 85 and/or 1 or more other criteria > Percentile 95 or Short time series with 1 or more criteria > Percentile 85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short</td>
<td>76</td>
<td>< 3yr - not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More information: http://epncb.oma.be/_productsservices/ReferenceFrame/Station_Classification.php under evaluation within EUREF
Web Tool for Selecting Reference Stations

- The goal of the tool is to help the user to choose the EPN reference stations to process together with their network ⇒ BEFORE the GNSS processing
- Input:
 - Begin and end dates of the solution ⇒ define the time span of the stations
 - Optional: pre-selected list of reference stations
- Output:
 - Interactive map with 3 station categories:
 - recommended, usable and not recommended
 ⇐ depending on station time span and station class
 - Additional information and plot
 - Possibility to select and de-select reference station
 - Export of list of long markername, table, Bernese FIX file and CATREF xvret.dat file

http://epncb.oma.be/_productsservices/ReferenceFrame/

under evaluation within EUREF
Conclusions

• Both the classification and the tool are under evaluation within EUREF

• A demo version is available online [http://epncb.oma.be/_productsservices/ReferenceFrame/]

• The tool helps the selection of optimal reference stations by providing a restricted list of reference stations and by giving access to additional information (number of position or velocity discontinuities, post-seismic deformation,...) and plots (detrended position time series, selection criteria values, velocity variability) for the stations

• Future improvements:
 • Take into account the geometry of the network
 • Improve usage of the information concerning the period of observation

Questions/Comments: Juliette.Legrand@oma.be