Models Bridging Subduction and Earthquake Dynamics Show Fault Strength as a Strain-average Quantity

Ylona van Dinther

Department of Earth Sciences, Utrecht University

© van Dinther. All rights reserved

Aim

What strength / friction values are appropriate across various scales?

- Geodynamic modelers interested in simulating subduction and plate tectonics: μ_{eff,static} < ~0.05
- Earthquake modelers interested in frictional sliding typically use Byerlee's friction ($\mu \sim 0.6$ -0.85): $\mu_{eff,static} > \sim 0.5$

$$\mu_{eff} = 1 - \frac{Pf}{P} = 1 - \lambda$$

- Are these results as far apart as they seem? I show that
 - » Recent cross-scale and earthquake models converge perspectives
 - » Analytical considerations constrained by observations and laboratory experiments suggest µeff,char is about 0.02 0.3

Long-standing debate: How weak or strong? Why?

- Absent local heat flow anomaly
 [e.g., Lachenbruch and Sass, 1992]
- Stress field rotation & z-indep. stress drop [e.g., Hardebeck, 2015]
- Differential stress estimates[e.g., Seno, 2009]
- Sustain subduction in models
 [e.g., Zhong et al., 1998; Duarte et al., 2015]

...

- Copyrighted graph from:
 - Data: Behr & Platt, EPSL, 2011

- Laboratory experiments (e.g., Byerlee, 1978)
- In-situ stress measurements (e.g., Brody et al., 1997)
- Dip orientation of earthquakes on (re-activated) faults (e.g., Sibson and Xie, 1998)
- Sustain mountains

o ...

EGU2020: van Dinther

I. Revisit arguments

- Absent local heat flow anomaly [e.g., Lachenbruch and Sass, 1992]
- Stress field rotation & z-indep. stress drop [e.g., Hardebeck, 2015]
- Differential stress estimates [e.g., Seno, 2009]
- Sustain subduction in models [e.g., Zhong et al., 1998; Duarte et al., 2015]

Weak

0

Copyrighted graph from:

Data: Behr & Platt, EPSL, 2011

- Laboratory experiments (e.g., Byerlee, 1978)
- In-situ stress measurements (e.g., Brody et al., 1997)
- Dip orientation of earthquakes on (re-activated) faults (e.g., Sibson and Xie, 1998)
- Sustain mountains

II. Estimate what mechanisms are most important

- Absent local heat flow anomaly
 [e.g., Lachenbruch and Sass, 1992]
- Stress field rotation & z-indep. stress drop [e.g., Hardebeck, 2015]
- Differential stress estimates [e.g., Seno, 2009]
- Sustain subduction in models
 [e.g., Zhong et al., 1998; Duarte et al., 2015]
-
- What weakening mechanism is most important?
 - High pore fluid pressures
 - Low static friction
 - Large dynamic earthquake weakening

- Laboratory experiments (e.g., Byerlee, 1978)
- In-situ stress measurements (e.g., Brody et al., 1997)
- Dip orientation of earthquakes on (re-activated) faults (e.g., Sibson and Xie, 1998)
- Sustain mountains

o ...

Rocks are almost always strong, but not at coseismic slip rates where most strain occurs

- High-speed lab experiments reveal enhanced dynamic weakening [e.g., Di Toro et al., Nature, 2011]
 - Low slip rates $\mu_{eff} \sim 0.7$

dynamic weakening γ ~ 0.79 $\gamma = 1 - \frac{\mu_d}{\mu_s}$

$$\gamma = 1 - \frac{\mu_d}{\mu_s}$$

Models simulating both long- and short-term dynamics

Included dynamic weakening in geodynamic models [Seismo-Thermo-Mechanical; STM; van Dinther et al., 2013a,b]

Conservation of mass, momentum and heat
Visco-elasto-plastic rheology

>> Spontaneous state and geometry e.g., stress, temperature, viscosity, fluid distribution

>> Spontaneous rupture nucleation, propagation and arrest

Need fluid and dynamic weakening in cross-scale models

■ For subduction, mountain building, and reasonable earthquake characteristics need ~0.005 < µeff, static < ~0.125</p>

Very weak @ very limited space or time does not mean weak throughout

- Temporarily weak (~10 MPa min.) and continuously overpressurized megathrust does not mean weak throughout lithosphere!
- Could still build mountains

max. megathrust $\sigma'_{11} \sim 40$ MPa, but elsewhere still almost GPa

 $\mu_{eff, static} = 0.05$

Long-term fault strength as a strain-average quantity

- » Rocks are "always" strong, but weak during dynamic slip, where most strain occurs → How do we account for that in long-term models?
- Consider friction as a strain-average quantity:
- Time-integrated mechanical energy dissipation

For equations I refer to van Dinther, in prep.

>> Derive constraints from observations and laboratory experiments

Long-term fault strength as a strain-average quantity

- » Rocks are "always" strong, but weak during dynamic slip, where most strain occurs → How do we account for that in long-term models?
- Consider friction as a strain-average quantity, since
- Time-integrated mechanical energy dissipation

$$H = \int \sigma_{ij(d)} \dot{\varepsilon}_{ij(d)} dt + \int \sigma_{ij(s)} \dot{\varepsilon}_{ij(s)} dt$$

Mechanical consistency of energy and strain for unresolved dynamics requires

$$\sigma_{II(c)} = \frac{\varepsilon_{II(d)}}{\varepsilon_{II(d)} + \varepsilon_{II(s)}} \sigma_{II(d)} + \frac{\varepsilon_{II(s)}}{\varepsilon_{II(d)} + \varepsilon_{II(s)}} \sigma_{II(s)}$$

With stress limited by strength (parameters) and

seismic coupling
$$\chi = \frac{M_0^{\sum}}{M_{0e}}$$
 pore fluid pressure ratio $\lambda = \frac{P_f}{P}$ dynamic weakening $\gamma = 1 - \frac{\mu_d}{\mu_s}$

$$\gamma = 1 - \frac{\mu_d}{\mu_s}$$

Long-term average, effective friction is strain-averaged as

$$\mu_{eff(c)} = \chi(1-\lambda)(1-\gamma)\mu_{(s)} + (1-\chi)(1-\lambda)\mu_{(s)}$$

>> Derive constraints from observations and laboratory experiments

Long-term, effective friction for pore fluid pressure vs. dynamic weakening

 μ_s

Feasible long-term friction values from data: ~ 0.02 - ~0.3

- Best guess:
- $\mu_s = 0.7$ [e.g., DiToro et al., Nature, 2011]
- $\chi = 0.3$ [e.g, McCaffrey, BSSA, 1997]

What do we need for long-term weak faults ($\mu_{eff,c}$ < 0.05)?

- What is needed for subduction to occur in geodynamic models? (i.e., μ_{eff,c} < 0.05; e.g., Zhong et al., 1998; Buiter et al., 2001; Sobolev & Babeyko, 2005; Duarte et al., 2015)
- » Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust

- Best guess:
- $\mu_s = 0.7$ [e.g., DiToro et al., Nature, 2011]
- χ = 0.3 [e.g, McCaffrey, BSSA, 1997]

What do we need for long-term weak faults ($\mu_{eff,c}$ < 0.05)?

» Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust

What do we need for long-term weak faults ($\mu_{eff,c}$ < 0.05)?

» Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust

Alternatively avoid fluid over-pressurized megathrusts through higher $\mu_{eff, c}$

» IF subduction with realistic characteristics can occur in long-term geodynamic models for

Relative effectiveness of weakening mechanisms

» Most effective way to remove highly over-pressurized faults remains reducing static friction (not earthquake slip)

Double	Reduces µeff (char) at	Reduces µeff (char) at
	reference values by	full seismic coupling by
1. pore fluid pressure	67%	
2. static friction	50%	
3. seismic coupling	47%	
4. friction drop	20%	50%

Apparently weak faults also work better for dynamic earthquake ruptures (DR)

• Lab-observed large strength drops allowed in slip/rate-weakening DR models through distinctly increased pore fluid pressures

2016 M7.8 KAIKOURA earthquake only jumps for large fluid pressures (λ ~0.66)

 $\Delta \tau \sim (\mu_s - \mu_d)(1 - \lambda)$

Ulrich et al., Nat. Comm., 2019 Strongly rate-dep. friction, $\gamma \sim 0.8$

» Strain occurs around $\mu_{eff} <= 0.1$

Models across scales support weak(er) megathrusts

» Recent modeling results show that long- and short-term results are not so far apart as they seem

DR Sumatra: Madden et al., AGU, 2018

Feasible long-term friction values from models: $\mu_{eff,c} \sim 0.02$ - ~ 0.20

- Best guess:
- $\mu_s = 0.7$ [e.g., DiToro et al., Nature, 2011]
- χ = 0.3 [e.g, McCaffrey, BSSA, 1997]

Conclusions

- Models at, and across, all time scales support (somewhat) weak megathrusts
 - $\mu_{eff,c} \sim 0.02 \text{ to } 0.2$

- Long-term strength is a strain-average quantity
 - Described by pore fluid pressure ratio, static friction, seismic coupling, and dynamic friction
- Analytical considerations constrained by data and laboratory experiments support (somewhat) weak megathrusts
 - $\mu_{eff,c} \sim 0.02 \text{ to } 0.3$
 - Megathrusts are mainly weak due to distinctly to highly over-pressurized pore fluids

» Geodynamic models not resolving earthquake dynamics are within their right within **bold** range (and can justify choice)