Models Bridging Subduction and Earthquake Dynamics
Show Fault Strength as a Strain-average Quantity

Ylona van Dinther

Department of Earth Sciences, Utrecht University

© van Dinther. All rights reserved
£y

= Utrecht University

™




Aim

What strength / friction values are appropriate across various scales?
Geodynamic modelers interested in simulating subduction and plate tectonics: Mett,static < ~0.05

Earthquake modelers interested in frictional sliding typically use Byerlee’s friction (U ~ 0.6-0.85): Meft,static > ~0.5

pp=1l— 0 =1-)
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Are these results as far apart as they seem? | show that
» Recent cross-scale and earthquake models converge perspectives
» Analytical considerations constrained by observations and laboratory experiments suggest Mett,char IS about 0.02 - 0.3
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Long-standing debate: How weak or strong? Why?

> Absent local heat flow anomaly o Laboratory experiments
le.g., Lachenbruch and Sass, 1992] (e.g., Byerlee, 1978)
> Stress field rotation & z-indep. stress drop ¢ In-situ stress measurements
[e.g., Hardebeck, 2015] (e.g., Brody et al., 1997)
c~0O(1)MPa o~ 0O(2) MPa | | | |
. Differential stress estimates o Dip orientation of earthquakes on (re-activated) faults
fe.q., Seno, 2009] A A (e.g., Sibson and Xie, 1998)

- Sustain subduction in models ¢ Sustain mountains

le.g., Zhong et al., 1998; Duarte et al., 2015]

Weak
Ueff ~ 0.05

Copyrighted graph from:

Data: Behr & Platt, EPSL, 2011
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l. Revisit arguments

> Absent local heat flow anomaly o Laboratory experiments
le.g., Lachenbruch and Sass, 1992] (e.g., Byerlee, 1978)

> Stress field rotation & z-indep. stress drop ¢ In-situ stress measurements
[e.g., Hardebeck, 2015] (e.g., Brody et al., 1997)

o~ 0O(1)MPa ¢~ O(2) MPa o | .
o Dip orientation of earthquakes on (re-activated) faults

o Differential stress estimates | |
A A (e.g., Sibson and Xie, 1998)

[e.g., Seno, 2009]

i ) . o Sustain mountains
> Sustain subduction in models

[e.g., Zhong et al., 1998; Duarte et al., 2015]

Weak
Uetf ~ 0.05

Copyrighted graph from:

Data: Behr & Platt, EPSL, 2011
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Il. Estimate what mechanisms are most important

- What weakening mechanism is most important?

- High pore fluid pressures
- Low static friction
- Large dynamic earthquake weakening
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Rocks are almost always strong, but not at coseismic slip rates where most strain occurs

- High-speed lab experiments reveal enhanced dynamic weakening [e.g., Di Toro et al., Nature, 2011]

- Low slip rates peft ~ 0.7

- High coseismic slip rates pest ~ 0.15
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Models simulating both long- and short-term dynamics

- Included dynamic weakening in geodynamic models [Seismo-Thermo-Mechanical; STM; van Dinther et al., 2013a,b]

Conservation of mass,
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+ rate-dep. friction
+ Inertia

>> Spontaneous state and geometry

-50 0 50 100 150 ' 200 250

e.qg., stress, temperature, viscosity, fluid distribution

O rupture tip ~ " |

-50 0 50 100 150 200 250

10

o
Ao, (MPa)

-10

>> Spontaneous rupture nucleation, propagation and arrest
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Gerya and Yuen, PEPI, 2007; STM: van Dinther et al., 2013a,b, 2014

4



Need fluid and dynamic weakening in cross-scale models

- For subduction, mountain building, and reasonable earthquake characteristics need ~0.005 < pest, static < ~0.125
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Need fluid weakening to allow for
subduction along shallow megathrust
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Very weak @ very limited space or time does not mean weak throughout

- Temporarily weak (~10 MPa min.) and continuously overpressurized megathrust does not mean weak throughout lithosphere!

- Could still build mountains

max. megathrust o’y ~ 40 MPa,
but elsewhere still almost GPa

eff, static = 0.05
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Long-term fault strength as a strain-average quantity

» Rocks are “always” strong, but weak during dynamic slip, where most strain occurs = How do we account for that in long-term models?
- Consider friction as a strain-average quantity:

- Time-integrated mechanical energy dissipation

For equations | refer to van Dinther, in prep.

>> Derive constraints from observations and laboratory experiments
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Long-term fault strength as a strain-average quantity

» Rocks are “always” strong, but weak during dynamic slip, where most strain occurs = How do we account for that in long-term models?
- Consider friction as a strain-average quantity, since

- Time-integrated mechanical energy dissipation H = /aij(d)éij(d)dtjt/aij(s)éij(s)dt
Mechanical consistency of d strain f ved dynami i ot = — D oy — D
- Mechanical consistency of energy and strain for unresolved dynamics requires I1(c) S 11y + E110e 11(d) 11 T E110) I1(s)

- With stress limited by strength (parameters) and

S - _ Mg - - P - . . Hd
seismic coupling | X = -~ pore fluid pressure ratio | \ = - dynamic weakening | v =1 — ”
Oe s

. Long-term average, effective friction is strain-averaged as Heff(c) = X(1 =21 =~ ‘|‘ (1 —x)(1 - A)M(s)

>> Derive constraints from observations and laboratory experiments
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Long-term, effective friction for pore fluid pressure vs. dynamic weakening
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What do we need for long-term weak faults (pesr,c < 0.05)?

- What is needed for subduction to occur in geodynamic models? (i.e., Heffc < 0.05; e.g., Zhong et al., 1998: Buiter et al., 2001: Sobolev & Babeyko, 2005: Duarte et al., 2015)

» Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust
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What do we need for long-term weak faults (Mesr,c < 0.05)?

» Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust
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What do we need for long-term weak faults (pesr,c < 0.05)?

» Dynamic weakening can bring pore fluid pressures in more acceptable range, but still requires largely over-pressurized megathrust
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Alternatively avoid fluid over-pressurized megathrusts through higher pes, ¢

» |F subduction with realistic characteristics can occur in long-term geodynamic models for
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Relative effectiveness of weakening mechanisms

» Most effective way to remove highly over-pressurized faults remains reducing static friction (not earthquake slip)

Double Reduces ef (char) at Reduces Meft (char) at
reference values by full seismic coupling by

1. pore fluid pressure 67 %

2. static friction 50%

3. seismic coupling 47 %

4. friction drop 20% 50%
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Apparently weak faults also work better for dynamic earthquake ruptures (DR)

- Lab-observed large strength drops allowed in slip/rate-weakening DR models through distinctly increased pore fluid pressures

. 2016 M7.8 KAIKOURA earthquake only jumps for large fluid pressures (A ~0.606)

AT ~ (ps — pa)(1 — A)

faultslip (m)
'

150
a)

'so

00

Ulrich et al., Nat. Comm., 2019
Strongly rate-dep. friction, y ~ 0.8

» Strain occurs around peff <= 0.1
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Models across scales support weak(er) megathrusts

» Recent modeling results show that long- and short-term results are not so far apart as they seem
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DR Sumatra: Madden et al., AGU, 2018

Feasible long-term friction values from models:
Metfc ~ 0.02 - ~0.20

- Best guess:
© Us= 0.7 [e.g., DiToro et al., Nature, 2011]

- x = 0.3 [e.g, McCaffrey, BSSA,1997]
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Conclusions

Models at, and across, all time scales support (somewhat) weak megathrusts
» Mefic ~0.02 to 0.2

Long-term strength is a strain-average quantity
Described by pore fluid pressure ratio, static friction, seismic coupling, and dynamic friction

Analytical considerations constrained by data and laboratory experiments support (somewhat) weak megathrusts
» Mefi,c ~ 0.02 to 0.3

Megathrusts are mainly weak due to distinctly to highly over-pressurized pore tluids

» (Geodynamic models not resolving earthquake dynamics are within their right within bold range (and can justify choice)
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